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Abstract

We identify a weak critical set in each cyclic latin square of order greater
than 5. This provides the first example of an infinite family of weak critical
sets. The proof uses several constructions for latin interchanges which are
generalisations of those introduced by Donovan and Cooper.

1 Introduction

A latin square of order n is an n x n array with entries chosen from a set N of
size n such that each element of N occurs exactly once in each row and column.
We shall use N = {0,1,...,n — 1} and label the rows and columns from 0 to
n —1. We may also represent a latin square by the set of n? triples (i, j, k) where
k is the element in row ¢ and column j.

A partial latin square of order n is an n X n array with entries chosen from a
set N of size n such that each element of N occurs at most once in each row and
column. We shall also use the corresponding set of triples to represent a partial
latin square.

A partial latin square, P, of order n is uniquely completable (UC) if there is
only one latin square, L, of order n that contains P.

The addition of a triple t = (i, 7, k) to a partial latin square, P, is said to be
forced if one of the following holds.

1. Vh # 4,3z such that (h, j, z) or (h,z k) € P.
2. Yh # j,3z such that (z, h, k) or (i,h,z) € P.
3. VYh # k,3z such that (i,z,h) or (2,4, h) € P.

A UC set, U, is strong if we can find a sequence of sets of triples U = 5] C
Sy C -+- C S, = L such that each triple t € S, ;1 — S, is forced in S,. A UC set
that is not strong is weak. A UC set that contains no smaller UC set is called
critical.
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Figure 1: Strong critical set for Cj Figure 2: Weak UC set for Cy

We will represent a cyclic latin square of order n by the set of triples
C,=A{0,j,i+37)]i=0,1,....,.n—1;j=0,1,...,n— 1}

where addition is modulo n.

A family of strong UC sets of cyclic latin squares identified by Nelder [5] have
been shown to be critical by Donovan and Cooper [2]; Figure 1 shows for Cj.
(e represents an empty cell). In [4] Keedweel showed that weak UC sets do not
exist in latin squares of order less than 5 . In [1] we reported that a computer
search had found that no weak UC set exists in the cyclic latin square of order 5,
and described weak UC sets for all cyclic latin squares of higher orders; Figure 2
shows the set for Cs. In this paper we identify critical subsets of these UC sets
by extending the techniques used by Donovan and Cooper in [2].

2 Latin interchanges

The number of filled cells in a partial latin square defines its size; their positions
define its shape. Two partial latin squares, P, and P,, of the same order, shape
and size are mutually balanced if the entries in each row (and column) of P; are
the same as those in the corresponding row (and column) of P,. They are disjoint
if no cell of P, has the same entry as the corresponding cell of P,. If they are
mutually balanced and disjoint they are called disjoint mates. A latin interchange
is a partial latin square for which there exists a disjoint mate. Examples of a latin
interchange and its disjoint mate are shown, superimposed in a single array, in
Figure 3.

The motivation for studying latin interchanges arises from the fact that a
partial latin square, P, is a UC set for a latin square, L, if and only if P intersects
all latin interchanges contained in L.

An entry of a UC set for L is crucial if there is a latin interchange in L
that intersects the UC set in that entry only; the latin interchange in Figure 3
intersects the critical set of Cs5 shown in Figure 1 only in the cell (0,2). It is easy
to see that a UC set is critical if and only if each of its entries is crucial.



Figure 3: A latin interchange and its disjoint mate

The following lemma about latin interchanges in cyclic latin squares is from
[2].
Lemma 1 If P, is a latin interchange in C,,, then its transpose
Pl ={(j.i,k) | (i,j,k) € P}
and, for any integers o and (3,
Ql = {(Z—FO&,]—Fﬁ,/{—FO&—i—B) ‘ (Zajak) € Pl}
are also latin interchanges.

Proof: If P is a disjoint mate of P, then P} is a disjoint mate of PI, and
Q:={(i+a,j+ 0, k+a+0)]|(ij,k) € P} is a disjoint mate of Q;. O.

We note in passing that the above Lemma generalises easily to latin squares
based on abelian groups.

3 Strong critical sets in cyclic latin squares

The following Lemma is well known.

Lemma 2 The set of triples
Sn=A0,j,i+7)]i=0,....n—2;7=0,....,.n—2—1i}

1s a strong UC set for C,, for alln > 2.

Proof: Consider the columns 0 to n—1 in order. The triples (n—1—14,j,j—i—1)
are forced as ¢ ranges from j to 0. |

In the rest of this section we briefly describe Donovan and Cooper’s proof that
S, is critical [2]. They showed that every entry in S, is crucial by constructing
a latin interchange in C), that intersects S, in only that entry. The bulk of the
proof comprises several constructions that are used to show that each entry in
row 0 of each S, is crucial. Lemma 1 is then used to prove that the remaining
entries are crucial.



Theorem 1 (Donovan and Cooper) S, is a strong critical set for C,,

Proof: We shall construct a latin interchange S, ., that intersects 5, in only cell
(r,c). Figure 3 displayed Spa5 and its disjoint mate.

There are seven different constructions that we use to prove entries in row 0
and, for all ¢ € {0,...,n — 2}, column ¢ of each S,, are crucial. First we define
xr, u and v:

r=n—1—¢ z=umod (c+1),0<u<c¢ n=vmodz,0<v<uz.

We now choose a construction for finding each Sy,

1. If ¢ = 0, use Construction 1.

2. If c =n — 2, use Construction 2.

3. If 1 <c¢<n/2—1and u =0, use Construction 3.

4. Ifn/2 <c¢<n-—3and v =0, use Construction 4.

5. f1<c<n/2—1and 0<u < (n—x)/2, use Construction 5.

6. If 1<c<n/2—1andu> (n—x)/2, use Construction 6.

7. Ifn/2 <c<n-—3and v # 0, use Construction 7.
Construction 1

The partial latin square comprising all the entries of 0 and n — 1 in C,, is a latin
interchange intersecting S,, in only (0,0). Formally Sy, is the set

{(i,n —1,0),(i,n—i—1,n—1)|i=0,...,n—1}.
Construction 2
A latin interchange intersecting .S,, in only (0,n — 2) is formed by the set
{i,n—2,i—2),(i,n—1,1—1)|i=0,...,n—1}.

This is the partial latin square comprising all entries in the last two columns of
C.

Construction 3

For 1 <¢<n/2—1and u =0, a latin interchange exists which intersects S, in
only (0, ¢) with cells containing either ¢ or n — 1. Sy ., is the set

{(i(c+1), n—1—(i=1)(c+1),¢), (i(c+1), n—1—i(c+1),n—1) | i = 0, ..., 2/(c+1)}.



Construction 4

For n/2 < ¢ <n—3and v =0, a latin interchange intersecting S, in only (0, ¢)
and containing entries in only columns ¢ and n — 1 can be found. Sy, is the set

{(iz,c iz + ), (ix,n —1,ix —1) |i=0,...,(n/z) — 1}.
Construction 5

For 1 < ¢ <n/2—-1and 0 < u < (n — x)/2 we construct a partial latin
square similar to that in Construction 3, but because u # 0, we “add” the latin
interchange: Spc—yc+1. Note that 0 <c—u <c¢—1, and c+1 < n so we can
choose one of the 7 constructions to obtain Sg ¢y, c41-

Define p = |z/(c+1)] and

R = {(z+u,j+x,z+]+u+x) | (Zajak) € SO,c—u,c+1}~
So,e,n 1s the set
{(O,C,C),(O,TL—]_,TZ—].)}URU
{u+m(c+1),n—1—u—m(c+1),n—1),
(u+mc+1),n—1—u—(m—-1)(c+1),c) | m=1,...p}.

Construction 6

For 1 <c¢<n/2—1and u > (n—2x)/2 we use a method similar to that employed
in the previous construction. We require the latin interchange Sp,—1 .41, note
that this can be obtained using one of the 7 constructions and ¢ + 1 < n. Define
p=lz/(c+1)] and

R = {Z—f-l,j—l—u,l—i—]—’d) | (Zvj7k> e‘s’gju—l,c—s—l :
So,e,n is the set
{(07070)7(07n_1an_1>}URU
{(u+m(c+1),n—1—1u—(m—1)(c+1),c),
(u+m(c+1),n—1—u—m(c+1),n—1)|m=1,...p}

Construction 7

For n/2 < ¢ < n—3 and v # 0 use a latin interchange Sy 14+, Note that
this can be obtained using one of the 7 constructions and x + v < n. Define

¢=|(n—x)/z] and



Sen is the set
RU{(mxz,c,mz+c),(mz,n—1,mx —1)|m=0,...,q— 1}.

In [2], each of these constructions was shown to be a latin interchange by
the construction of a disjoint mate. As the latin interchanges required for the
last three constructions are of order less than n, we can prove by induction that
we can construct So., for all ¢, for all n. It was also shown that all the latin
interchanges produced with these constructions have no entries in columns 0 to
c¢—1; and, if ¢ < n/2 —1, all entries are in rows 0 to x; if ¢ > n/2 — 1, all entries
are in rows 0 to c+ 1.

We complete the proof using Lemma 1. If c < n/2 —1and 1 < s < ¢, or if
c>n/2—1and 1 <s<n-—c—2, then

Ss,c,n = {(Z + $>j7 k + S) ’ (imja k) € SO,c,n}

The remaining entries of S,, are all in cells (r, ¢) such that the entry in (¢, )
has been shown to be crucial. Therefore we can define

Sr,c,n = {(],Z,k’) ‘ (fl.?j? k) € SC,T,n}

As SI'= G, this will be a latin interchange that intersects S, in only cell (r,c).
O

4 Weak critical sets in cyclic latin squares
Lemma 3 The set of triples W,, = P, U@, U R,,, where

P, = {(,4,i+)]i=0,....n—45=0,....,n—4—i}

Q. = {(i,kn—2—in—-2)|i=1,...,n—3}

R, = {2n-1,1),(n—2,n—1,n—-3),(n—1,n—2,n—23)}
is a weak UC set for C,.
Proof: The triples (i,n —3 —i,n — 3),i = 0,...,n — 3 are forced; the resulting
set is the weak UC set for C), obtained in [1]. O

W, is a subset of the weak UC set introduced in [1]; compare Figures 2 and
4. The principal result of this paper follows.

Theorem 2 W, is a critical set.

The proof of this theorem uses the constructions of the previous section where
possible. Some further constructions are required. We define W, ., as a latin
interchange in C,, that intersects W,, only in the cell (r,c).
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We first consider entries in row 0 of P,. If Sy ., intersects R,, we cannot let
Wi en = Sren. However, Sp ., will only intersect {(n —2,n —1),(n —1,n —2)}
if c=mn—2or ¢c=n—1, and neither of these entries are in W,,. Therefore we
need only consider whether S, ., intersects (2,n — 1). Constructions 8-12 deal
with all such cases.

For squares of all orders, Sy, intersects W, in the cell (2,n — 1,1), so we
must define a distinct Wy,,. For even n we use Construction 8; for odd n
Construction 9.

Construction 8

Worn = {(n+1-20,2i,1),(n—1—2i,2i,n—1)]i=1,...,n/2—2}U
(=204 2,0),(n—1,i+2,i+1),(i +2,n— 2,0),
(t+2,n—1i+1)]i=1,...,n—5}U
{(0,1,1),(0,n —2,n—2),(0,n —1,n—1),(n —2,0,n — 2),

(n—2,1,n—1),(n—2,n—2,n—4),

(n—1,0,n—1),(n—1,n—1,n—2)}

and has disjoint mate

{(n+1—-2i,2i,n—1),(n—1—-2i,2i,1) [i=1,...,n/2 — 2}U

{( —2z+2z+1)( —1,i4+2,7),(i+2,n—2,1+1),
(it+2,n—1,49)|i=2,...,n—5}U

{(0,1,n — 1), (0 n—21),0,n—-1,n-2),3,n-2,2),3,n—1,n-—1),
(n—2,0,n—1),(n—2,1,1),(n —2,3,2),(n—2,n—2,n — 2),
(n—1,0,n—2),(n—1,3,1),(n—1,n—1.n—4)}.

Example 1 Wy, 12 and its disjoint mate are displayed in Figure 6.

Construction 9

Woin {(21—4—1 n—2—22n 1),(22’+1,n—2i 1)|z

n—

(z—i—l n— l,z)|i:2,...,n—4}u
0,1

(

., (n—3)/2}U

{(0,1,1),(0,n —2,n—2),(0,n —1,n—1)(n—2,0,n — 2),
n— 2,1,n 1),(n—1,0,n—1),(n—1,n—1n—2)}



and has disjoint mate
{2i4+1,n—2-2,1),(2i+1,n—2i,n—1) |
1

i =
{(n—2,i+1,7),(n— 1,1+ 2,4),(i 4+ 2,n — 1,1),
(z—l—ln 2,i)|i=2,...,n—5}U
(
(

. (n—5)/2}U

{(0,1,n—1),(0,n—2,1),(0,n —1,n—2),(3,n—4,1),(3,n —1,n — 1),
n—3n—2n—-4),(n—2,0,n—1),(n—2,1,1),(n —2,n — 3,n — 4),
(n—Z,n 2n—2),(In—1,0,n—-2),(n—1,3,n—1),(n—1,n—1.n—4)}.

Example 2 Wy 11 and its disjoint mate are displayed in Figure 7.

When Construction 5 is used to obtain Sy, and © = 1 we cannot let Wy ., =
S0.cn 88 S includes an entry in cell (2,n — 1,1). Instead we use the following
construction.

Construction 10

Let p = |x/(n — z)| and then

Woem = {(0,¢,¢),(0,n—2,n—2),(0,bn—1,n—1),(n—1,n—1,n—2)}U
{(1+ (C+1),C(p+1— m)+(p—m),n—1),
(1+m(c+1),c(p+2— )+(p+1—m),c)|m:1,...p}u
{i,n—=1,i—=1),(i+1L,n—2,i—1)|i=c+2,...,n—3}U
{(n—2,i,i—2),(n—1,4,i—1)|i=0,...,n—3}.

This has the disjoint mate

{(0,¢,n—1),(0,n —2,¢),(0,n—1,n—2)}U
{(<1+m(c+1 ,cp+1— m) + (p —m),c),

(0

)
L+m(c+1),c(p+2— m)+(p+1—m),n—l)\m:2,...p}u
{i,n—=2,i—1),(i+1L,n—1,i—1)|i=c+2,...,n—4}U
{(n—2,4,i—1),(n—1,i,1—2) |i=0,...,n—3}U
{(c+2,p(c+1)—1,¢),(c+2,n—1,n—1),(n—2,n—2,n—2),

(n—=3,n—2n—-4),(n—1,n—1,n—4)}
Example 3 Wy 313 and its disjoint mate are displayed in Figure 8.

If u = 2 we cannot use Constructions 5 or 6 as they intersect the cell (2,n—1).
The alternative construction used depends on whether ¢ is odd or even. For odd
¢, we use Construction 11; for even ¢ we use Construction 12.

Construction 11
Again, let p = |z/(n — x)],

Woem = {2+mc+1),n—=3—(m—1)(c+1),0),
24+m(c+1),n—3—m(c+1),n—1)|m=1,...,p}U
(t,bn—1—d,n—1),(i+1,n—1-140)]i=0,1,2}U
(2i+1,n—1,29),(20+3,n—3,2i) |i=1,...,(c—1)/2}U
(0,¢,¢),(c+1,n—1,¢),(c+1,n—2,c—1),(c+2,n—2,¢0)}

8



and has disjoint mate
Woem = {2+m(c+1),n—3—-(m—1)(c+1),n—1),
24+m(c+1),n—=3—m(c+1),c)|m=1,...,p}U

{(i,n—1—i,O),(z,n—z,n—1),(c—i—z,n—1—@',6),
(c+i,n—i,c—1)]i=12}U
{(2i 4+ 1,n—3,20),(2i +1,n—1,2i —=2) |i=1,...,(c—1)/2}U
{(0,¢,n—1),(0,n—1,¢)}.

Example 4 Wy 314 and its disjoint mate are displayed in Figure 9.

Construction 12

Let p = [z/(n —2)],

Woen = {24+ m(c+1),n—3—(m—1)(c+1),c¢),
2+m(c+1),n—=3—m(c+1),n—1)|m=1,...,p}J
{i,tn—=1—i,n—1),(i+1,n—1-14,0)|i=0,1,2}U
{(2i+1,n—1,20), (2 +3,n—3,2) |i=1,...,(c—2)/2}U
{

(0,¢,¢),(c+1,n—1,¢)}
and has disjoint mate

Woen = {24 m(c+1),n—=3—(m—1)(c+1),n—1),
2+m(c+1),n—=3—m(c+1),¢c)|m=1,...,pU
{(i,n —1—-14,0),(i,n—d,n—1) |i=1,2}U
{2+ 1,n—3,2),2i+1,n—1,2i—2) |i=1,...,¢/2}U
{(OCTL )<O7n_1ac>}'

Example 5 Wy 616 and its disjoint mate are displayed in Figure 10.

We now look at the entries of (),. For such entries S, ., is constructed
using Construction 4 or 7, and “translating” it using Lemma 1. S3,_4, will
always intersect (2,n — 1); Constructions 13, 14 and 15 present an alterna-
tive. For the other entries of R, there is a possibility that S, ., will intersect
{(n —=2,mn—1),(n—1,n —2)}. This possibility is removed by adapting Con-
struction 7 (Construction 4 will never intersect these two cells). To construct
a latin interchange using Construction 7 a smaller construction is required, and
that itself may have been based on a smaller construction and so on. Only if the
“basic” construction was an instance of Construction 2 will S, ., intersect those
two cells. Therefore we replace Construction 2 with the set

{(i,n —2,i—2),(t,n—1,i —1),(n — 2,4,i — 2),
(n—1,4,i—1)]|i=0,...,n—3}U
{(n—2,n—2,n—4),(n—1,n—1,n—2)}

The entry in cell (2,n — 4) is a particularly awkward case requiring three

constructions. If n = 0 mod 3 we use Construction 13; if n = 1 mod 3 we use
Construction 14; if n = 2 mod 3 we use Construction 15.



Construction 13

Won-sn = {(0,n— —2), (On IL,n—1),(1,n—2,n—1),
(1,n — ),( 4n—2) (2,n—2,0),(3,n—3,0),
(3,71 )7( )(4’n 3,1),(5,71—4,1),
(5,7 —3,2), (5 n— 1 4
{(5+3zn 4,143i),(54+3i,n—1,4+3i) |i=0,..

.,n—6/3}.
It has the disjoint mate

{(0,n—=2,n—-1),(0,n—1,n—2),(1,n—2,0),

(1 I,n—1),(2,n—4,0),(2,n —2,n — 2),(3,n—3,2),
(3.n—1,0), (4.0 — 4,1), (4. n — 3,0), (5,1 — 4,4),
(5,n—3,1), (5,7 — 1,2)}U
(

{(5+3i,n—4,443i),(5+3i,n—1,143i) |i=1,....,n—6/3}.

,n—
n —

Example 6 W12 is displayed in Figure 11.

Construction 14

Won-an = {(0,n—2,n-2),(0,n—1,n—-1),(L,n—2,n—1),
(1,n—1,0),(2,n —4,n—2),(2,n—2,0),(3,n — 3,0),
(3,n—2,1),(3,n—1,2),(4,n—4,0),(4,n — 3,1),
(4,n —2,2)}U

{(6+3i,n—4,2+30),(6+3i,n—1,5+30) | i

i=0,...,n—7/3}.
It has the disjoint mate

{

(0, 2n—1),(0, —1,n—2),(1,n — 2,0),
( —-1),(2,n—4,0),(2,n —2,n—2),(3,n — 3, 1),
(3, n

) (3,n—1,0), (4 n—4,2),(4,n—3,0),(4,n—2,1), }U
{(6—1—3@ n—4,54+3i),(64+3i,n—1,2+3i)|:=0,...,n—7/3}.
Example 7 Wy 913 is displayed in Figure 12.
Construction 15
Won—an = {(0,n—2,n-2),(0,n—1,n—1),(I,n—2,n—1),

(I,n—1,0),(2,n —4,n—2),(2,n — 2,0)}U

{(4+3i,n—4,3i),(4+3i,n—1,3(i+1)) |t =0,...,n—5/3}.
It has the disjoint mate
{(0,n—-2,n—-1),(0,n—1,n—2),(1,n—2,0),
(LLn—1,n—1),(2,n—4,0),(2,n —2,n — 2)}U
{(4+3i,n—4,3(:+1)),(4+3i,n—1,3t) |t =0,...,n—5/3}.
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Example 8 W5 1014 15 displayed in Figure 13.

The following constructions deal with the entries in R,
Construction 16
W -1 is the set

{(in—2,i—2),(i,n—1,i—1),(n—2,4,i—2),
(n—1,4,i—1)|i=0,...,n—3}U
{(n—=2,n—2,n—4),(n—1,n—1,n-2)}.

It has the disjoint mate

{(i,n—2,i—1),(i,n— 1,1 —2),(n —2,i,i — 1),
(n—1,i,i—2)]i=0,...,n—3}U
{n—2,n—2,n—2),(n—1,n—1,n—4)}

Example 9 W; 7 displayed in Figure 14.

The latin interchange that we use for the remaining two cells depends on
whether n is even or odd. For even orders we use Construction 17; for odd orders
Construction 18.

Construction 17
Wi—2n-1, is the intercalate

{(n/2-2,n/2—-1,n—3),(n/2—2,n—1,n/2—3),
(n—2,n/2—-1,n/2—-3),(n—2,n—1,n—3)}.

Its transpose is Wy,_1 24
Example 10 Figure 15 displays Wgs 910 and Wy g 10.

We can not use this construction for the cell (6,7,5) in Cy because the inter-
calate includes (2,7,1) which is in Wg. We display the latin interchange that we
use instead in Figure 5.

Construction 18
Wi—1n—2n is the set

{(2i,n —3—2i,n—3),(2i,n—1—-2i,n—1)]|i=0,...(n—1)/2}U
{(0,n—2,n—-2),(n—1,n—1,n—2)}

It has disjoint mate

{(2i,n—3—2in—1),2,n—1-2in—3)]i=1,...(n—3)/2}U
{(0,n—=3,n—1),(0,n—2,n—3),(0,n—1,n—2), )
(n—1,0,n—3),(n—1,n—2n—-2),(n—1,n—1,n—-1)}

Its transpose is Wy,_2 51 -

11
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Figure 5: W75

Example 11 In Figure 16 we display Wg .

We can now prove Theorem 2. We have given constructions that show for
each n, the entries of (),, and R,,, and the top row entries of P, are crucial. We
now deal with all entries of P, outside row 0. For entries in column 0, including
that in cell (0,0), we let W, o, = S, 0. For entries in the set

{(r,e)|r=1,....,n/2=2;c=1,...,n—4—1i}
we define W, .,, as the set
{(Z +T7j - 1,k‘+7" - 1) ’ (i7j7 k) € SO,c+1,n}

which, by Lemma 1 is a latin interchange in C,,. It can easily be seen that it does
not intersect P, or @, except in cell (r,c). It can also be deduced that its entries
are in columns ¢ to n — 2. If ¢ < n/2 entries are in rows r ton —c— 1, and as ¢
is at least 1, there are no entries in row n — 1. If ¢ > n/2, entries are in rows 0
tor+c+1. Asr+ cis at most n — 4, there are again no entries in row n — 1.
Therefore this set does not intersect R,,.

For the remainder of the entries in P, outside row 0, W, ., is the transpose
of Wern. O

12
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Figure 6: W071712
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