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Abstract

Let t be a positive integer and let L = (l1, . . . , lt) and K =
(k1, . . . , kt) be collections of nonnegative integers. A (t, K,L)-factor-
ization of a graph is a decomposition of the graph into factors F1, . . . , Ft

such that Fi is ki-regular and at least li-edge-connected. In this paper
we apply the technique of amalgamations of graphs to study (t, K,L)-
factorizations of complete graphs. In particular, we describe precisely
when it is possible to embed a factorization of Km in a (t, K,L)-
factorization of Kn.

keywords: factorizations, embeddings, amalgamations
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1 Introduction

A factor of a graph is a subgraph with the same vertex set as the graph.

A factorization of a graph is a set of factors with the property that the

edge sets of the factors partition the edge set of the graph. In this paper

we consider factorizations of complete graphs. Let t be a positive integer

and let K = (k1, k2, . . . , kt) and L = (l1, l2, . . . , lt) be lists of nonnegative

integers. We shall consider factorizations F1, . . . , Ft of the complete graph

Kn in which, for 1 ≤ i ≤ t, Fi is a ki-regular li-edge-connected graph. These

are called (t,K, L)-factorizations. Johnstone [8] proved the following result

that describes precisely when they exist.

Theorem 1 A (t,K, L)-factorization of Kn exists if and only if

(A1)
t∑

i=1

ki = n− 1,

(A2) if n is odd, then each ki is even,

(A3) for 1 ≤ i ≤ t, li ≤ ki, and

(A4) if n ≥ 3, li = 0 if ki = 1.

Johnstone proved Theorem 1 by constructing the factorizations. At the end

of the next section we shall give a proof using amalgamations. Many combi-

natorial problems have been solved using amalgamations; see, for example,

[1, 2, 3, 4, 6, 7, 11]. Let us sketch how the technique is used on graph

factorizations. Consider a partition of a graph G’s vertex set into subsets

V1, . . . , Vr. Then an amalgamation of G has vertex set V1, . . . , Vr, and for

each edge in G joining a pair of vertices in Vi, 1 ≤ i ≤ r, there is a loop on

Vi in the amalgamation, and for each edge in G joining a vertex in Vi to a

vertex in Vj, 1 ≤ i < j ≤ r, there is an edge ViVj in the amalgamation. (We

can think of the amalgamation as being obtained from G by merging vertices

that belong to the same subset whilst retaining all edges.)
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If G has a factorization, then we can represent it as an edge-colouring

with the factors as the colour classes (in this paper we frequently use the

equivalence of factorizations and edge-colourings). This colouring can be

transferred to an amalgamation of G—each edge of the amalgamation has

the same colour as the corresponding edge of G. Henceforth when we re-

fer to an amalgamation we mean a graph with an edge-colouring. Suppose

that G = Kn and that it has a (t,K, L)-factorization. Then we can find

some properties that an amalgamation of G must possess. For example we

can find the number of loops on each vertex, the number of edges between

each pair of vertices and the number of edges of each colour incident with

each vertex. We call any edge-coloured graph that satisfies these properties

an outline (t,K, L)-factorization of Kn. In Theorem 3 we prove that ev-

ery outline (t,K, L)-factorization is an amalgamated graph. That is, given

an outline graph G we find a (t,K, L)-factorization of Kn of which G is an

amalgamation. This will allow us to give a simple proof of Theorem 1

This kind of outline/amalgamation result is a staple of papers on combina-

torial amalgamations, but we were not able to apply the standard techniques

(such as those used on problems on amalgamations of factorization of graphs

in [4, 6, 7, 11]). An innovation of this paper is to show how a new technique

for finding factorizations of graphs introduced by Hilton and Johnson [5] can

be applied to amalgamations.

In the final section we use the outline/amalgamation result to solve the

problem of embedding a factorization of Km in a (t,K, L)-factorization of

Kn. We describe briefly how this will be done. Suppose that we have a

factorization (or an edge-colouring) of Km. Add to it a vertex v. Join v to

each vertex of Km by (n−m) edges and put

(
n−m

2

)
loops on v to form a

graph G. Complete the edge-colouring of G by colouring the edges incident

with v. (Note that G can be seen to be Kn with (n −m) vertices merged.)

If G is an outline (t,K, L)-factorization of Kn, then there is a (t,K, L)-

factorization of Kn in which the factorization of Km is embedded; we can

think of this factorization of Kn as being obtained from G by splitting v into
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(n − m) vertices. From the properties that define an outline factorization

we can work back to find the properties that Km must possess if it is to be

embedded.

2 Amalgamated factorizations

Before we formally define amalgamations we require another definition. Let

D andG be graphs. D is a detachment ofG if there is a bijection ρ: E(D) −→
E(G) and a surjection σ: V (D) −→ V (G) such that

• if e is a loop on v in D, then ρ(e) is a loop on σ(v) in G,

• if e is an edge joining v and w in D and σ(v) = σ(w), then ρ(e) is a

loop on σ(v) in G, and

• if e is an edge joining v and w in D and σ(v) 6= σ(w), then ρ(e) is an

edge joining σ(v) and σ(w) in G.

We can think of D as being obtained from G by splitting vertices. A detach-

ment is the opposite of an amalgamation, except that we define amalgama-

tions on graphs which have an edge-colouring.

Let t be a positive integer. Let F and H be t-edge-coloured graphs. H

is an amalgamation of F if there is a bijection φ: E(F ) −→ E(H) and a

surjection ψ: V (F ) −→ V (H) such that

• if e is a loop coloured i on v in F , then φ(e) is a loop coloured i on

ψ(v) in H,

• if e is an edge coloured i joining v and w in F and ψ(v) = ψ(w), then

φ(e) is a loop coloured i on ψ(v) in H, and

• if e is an edge coloured i joining v and w in F and ψ(v) 6= ψ(w), then

φ(e) is an edge coloured i joining ψ(v) and ψ(w) in H.
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We can think of the set of vertices {u : u ∈ V (Kn), ψ(u) = v} as being

merged to form v.

Let Fi and Hi be the subgraphs of F and H induced by edges coloured

i, 1 ≤ i ≤ t. Then Fi is a detachment of Hi.

Let t, n, K and L be as defined in the Introduction. Suppose that F = Kn

is t-edge-coloured and that Fi is ki-regular and li-edge-connected, 1 ≤ i ≤ t,

(that is, the edge-colouring gives a (t,K, L)-factorization of Kn). If H is an

amalgamation of Kn, then define f : V (H) −→ N by

f(v) = |{u : u ∈ V (Kn), ψ(u) = v}|.

So f counts the vertices that are merged to form v. Together H and f form

an amalgamated (t,K, L)-factorization of Kn.

Theorem 2 Let H and f be an amalgamated (t,K, L)-factorization of Kn.

Then

(B1) for all pairs of distinct vertices v, w ∈ V (H), there are f(v)f(w) edges

joining v to w,

(B2) for all v ∈ V (H), there are

(
f(v)

2

)
loops on v,

(B3) for all v ∈ V (H), for 1 ≤ i ≤ t, v is incident with kif(v) edges of

colour i (counting loops twice),

(B4)
∑

v∈V (H)

f(v) = n, and

(B5) for 1 ≤ i ≤ t, Hi has an li-edge-connected ki-regular detachment.

Proof: We know that f(v) vertices in Kn are merged to form v and f(w)

vertices are merged to form w. In Kn there are f(v)f(w) edges between these

two sets of vertices, and when the vertices are merged these edges join v to

w. Hence we obtain (B1).
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The subgraph of Kn induced by the f(v) vertices merged to form v is

Kf(v) and contains

(
f(v)

2

)
edges. When the vertices are merged these edges

become loops on v. Hence we obtain (B2).

In Fi the f(v) vertices merged to form v each have degree ki. The sum

of these degrees is the degree of v in Hi. Hence we obtain (B3).

As f counts the number of vertices merged to form each vertex of the

amalgamation of Kn and as each vertex of Kn corresponds to exactly one of

the vertices of the amalgamation, we obtain (B4).

As we noted before, Fi is an li-edge-connected ki-regular detachment of

Hi so (B5) is satisfied. 2

A t-edge-coloured-coloured graph H and a function f : V (H) −→ N
form an outline (t,K, L)-factorization of Kn if they satisfy (B1) to (B5).

By Theorem 2, an amalgamated (t,K, L)-factorization of Kn is an outline

(t,K, L)-factorization of Kn. We prove that the converse is true.

Theorem 3 Let H and f be an outline (t,K, L)-factorization of Kn. Then

H and f are an amalgamated (t,K, L)-factorization of Kn.

Before we prove Theorem 3, we must introduce an important tool first used

in [5]. Let a and b be vertices each of degree d in a multigraph G. Let u be

a neighbour of a and v be a neighbour of b in G. To (a, b)-swap the vertices

u and v means to form a new graph from G by deleting the edges au and bv,

and adding the edges av and bu. Clearly this manoeuvre leaves the degrees

of all the vertices unaltered.

We can find d neighbours of a in G by counting a vertex u as a neighbour

of a as many times as there are edges au. An (a, b)-swap-set is a collection

of d pairs of vertices such that each neighbour of a is the first element of

exactly one pair and each neighbour of b is the second element of exactly one

pair. We call the pairs (a, b)-pairs. The proof of the following lemma uses

an argument from [5]
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Lemma 4 If a and b are vertices each of degree d in a l-edge-connected

multigraph G, then there exists an (a, b)-swap-set S such that a graph obtained

from G by (a, b)-swapping any number of (a, b)-pairs in the swap-set is at least

l-edge-connected.

Proof: First form S. In G we can find l edge-disjoint a–b paths auj · · · vjb,

1 ≤ j ≤ l. Let (uj, vj) be a pair in S. For any edges ab in G not already

considered as one of the paths, let (b, a) be a pair in S. Complete S by

pairing off the remaining neighbours of a and b arbitrarily.

Consider a graph obtained from G by (a, b)-swapping pairs in S. It

contains l edge-disjoint a–b paths since, for 1 ≤ j ≤ l, it contains either

auj · · · vjb or buj · · · vja. Now we use induction to prove the lemma. We

know that G is l-edge-connected. Suppose that after some number of (a, b)-

swaps we have obtained a graph H that is l-edge-connected, and then we

(a, b)-swap a further (a, b)-pair (u, v) to obtain a graph J . That is, au and

bv are deleted in H and replaced by av and bu to obtain J . If J is not l-edge

connected, then we can find a minimal edge-cutset E such that |E| < l. We

show that H has an edge-cutset of the same size as E, a contradiction. Let

C1 and C2 be the two connected components of J − E. In J there are l

edge-disjoint a–b paths so a and b must be in the same component of J −E,

say C1. If u and v are also both in C1, then in J − E we could reverse the

(a, b)-swap of u and v to obtain H − E which would also have two compo-

nents. If u and v are both in C2, then av and bu must both be in E. Thus

(E \ {av, bu})∪{au, bv} is an edge-cutset of H. Finally, suppose that u is in

C1 and v is in C2. Then av ∈ E and bu ∈ C1. Let E ′ = (E \ {av}) ∪ {bv}
and C ′

1 = (C1 − {bu}) ∪ {au}. Thus H −E ′ has two connected components,

C ′
1 and C2. 2

Proof of Theorem 3: Given an outline graph H and f , we find a (t,K, L)-

factorization of Kn of which H and f are an amalgamation.

By (B5), for 1 ≤ i ≤ t, Hi has an li-edge-connected ki-regular detachment

which we denote Fi. In this proof we refer to the subgraphs H1, . . . , Ht as
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colour classes and to their detachments F1, . . . , Ft as factors. Each of the

factors is a graph with n vertices so let the vertex set of each factor be

V (Kn). Label the vertices of each factor so that for each v ∈ H the set of

vertices formed by the splitting of v when Fi is obtained from Hi is the same

for each i, 1 ≤ i ≤ t. Let U be a graph on V (Kn) that contains each edge

of each factor. Thus U has the same number of edges as Kn. To prove the

theorem we show that we can alter the edge sets of some of the factors Fi

in such a way that each of the graphs obtained is also an li-edge-connected

ki-regular detachment of Hi and the union of the new graphs is Kn.

(As we remarked in the Introduction, this method of proof differs from

that used previously in outline/amalgamation theorems on graphs. In the

standard proof (see, for example, [4, 6, 11]) the outline graph is “disentan-

gled” by considering in turn each vertex v with f(v) > 1. A new graph is

obtained by splitting v into two vertices v1 and v2 with f(v1) = f(v)− 1 and

f(v2) = 1 in such a way that the new graph is also an outline graph. By

repetition, an outline graph in which f(v) = 1 for every vertex v is obtained.

Such a graph is the required factorization.)

Let V (H) = {v1, v2, . . . , vr}. Let V (Kn) = V1 ∪ V2 ∪ · · · ∪ Vr, where Vj,

1 ≤ j ≤ r, is the set of vertices {uj1, uj2, . . . , ujf(vj)} that was formed by the

splitting of the vertex vj in each Hi. We call these smaller vertex sets sets

of split vertices. Notice that two subgraphs of Kn are both detachments of

the same colour class if and only if for each pair of sets of split vertices Vj

and Vz, 1 ≤ j ≤ z ≤ r, the number of edges that join a vertex in Vj to a

vertex in Vz is the same in each subgraph. From the definition of an outline

factorization we find that

(B1′) for all pairs of distinct sets of split vertices Vj and Vz, in U there are

f(vj)f(vz) edges joining vertices in Vj to vertices in Vz, and

(B2′) for all sets of split vertices Vj, there are

(
f(vj)

2

)
edges in the subgraph

of U induced by the vertices of Vj.
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Now we alter the factors to obtain a factorization of Kn. Note that we

shall refer to Fi before and after each alteration by the same name, and we

shall also refer to the altered graphs as factors and define U in terms of the

altered graphs. Our aim is to alter the factors so that U = Kn. The factors

may have loops, and removing them is the first alteration we make. Suppose

that there is a loop on a vertex a in Fi. Let Vz be the set of split vertices

that contains a. By (B2′), |Vz| ≥ 2 so there is a vertex b ∈ Vz, a 6= b. If there

is also a loop on b, then we can delete the loops and replace them with two

edges joining a to b. Clearly Fi is still ki-regular and its edge-connectivity

has not decreased. If there is no loop on b, then find li disjoint a–b paths

(choosing edges ab if possible). We must have li < ki (else there could not

be any loops), so we can find an edge bu that is not in one of these a–b paths

and u 6= a (as there is a loop on a, and a and b have the same degree, b must

be adjacent to a vertex other than a). Delete the loop on a and bu and add

edges ab and au. The new graph is ki-regular and has one fewer loop than

the original graph. We must check that the new graph is li-edge-connected.

If it is not, then there is a minimal edge-cutset E, |E| < li. Note that E

cannot separate a and b since they are joined by li disjoint paths. Thus

ab /∈ E. If au /∈ E, then E is a cutset of the original graph, and if au ∈ E,

then (E \ {au}) ∪ bu is a cutset of the original graph; a contradiction since

the original graph was li-edge-connected.

By repetition we obtain a set of loopless factors. Note that in each case

the new factor is still a detachment of the corresponding colour class.

By Lemma 4 for 1 ≤ i ≤ t, if a and b are vertices in Fi, then we can find

a set Si(a, b) that is a collection of ki (a, b)-pairs such that

• each neighbour of a in Fi is the first element of exactly one pair and

each neighbour of b is the second element of exactly one pair,

• there are li pairs (uj, vj) such that there exist in Fi edge-disjoint paths

auj · · · vjb, 1 ≤ j ≤ li, and

• for each edge ab in Fi, there is an (a, b)-pair (b, a).
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Note that if a and b are in the same set of split vertices Vj, then any graph

obtained from a factor Fi by (a, b)-swapping a pair (u, v) in Si(a, b) is also

a detachment of the corresponding colour class Hi since we delete an edge,

au, that joins u to a vertex in Vj and replace it with another edge, bu, that

also joins u to a vertex in Vj. Similarly for v. Also by Lemma 4, any graph

obtained from Fi by (a, b)-swapping pairs in Si(a, b) is li-edge-connected. So

if we alter the factors using only (a, b)-swaps for pairs of vertices a and b in

the same set of split vertices and we obtain a (t,K, L)-factorization of Kn,

then H and f will be an amalgamation of this factorization. We show how

this is done.

There are two further stages to the proof. We will often say informally

that two disjoint sets of vertices V and V ′ are joined by the correct number

of edges if they are joined by |V ||V ′| edges, that is, the number of edges

between them in Kn. In the next stage of the proof we alter the factors so

that each vertex is joined the correct number of times to each set of split

vertices. That is, we alter the factors so that they satisfy

(C1) in U , for 1 ≤ j ≤ r, 1 ≤ h ≤ f(vj), ujh is joined by f(vj)− 1 edges to

vertices of Vj and, for 1 ≤ z ≤ r, z 6= j, by f(vz) edges to vertices in

Vz.

We then complete the proof by further altering the edge sets of the factors

so that

(C2) in U each pair of distinct vertices is joined by exactly one edge.

In other words, U = Kn.

First we alter the factors so that (C1) is satisfied. For any vertex a ∈ V ,

for 1 ≤ j ≤ r,

• let p(a, Vj) be the number of edges in U that join a to a vertex in the

set of split vertices Vj,

• let q(a, Vj) = f(vj) if a 6∈ Vj, let q(a, Vj) = f(vj)− 1 if a ∈ Vj.
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That is, q(a, Vj) is the number of edges that will join a to vertices in Vj in U

when U = Kn. Thus to satisfy (C1) we must alter the factors so that for each

vertex a ∈ V (Kn), for 1 ≤ j ≤ r, p(a, Vj) = q(a, Vj). Let the set-discrepancy

δs be defined by

δs =
∑

a∈V (Kn)

r∑
j=1

|p(a, Vj)− q(a, Vj)|.

(C1) is satisfied when the set-discrepancy is zero. We describe a method

that will reduce the set-discrepancy if it is greater than zero. By applying it

repeatedly we obtain a set of factors that satisfies (C1).

Let j and z be fixed. By (B1′) and (B2′) each pair of sets of split vertices

is joined by the correct number of edges. Thus∑
a∈Vz

p(a, Vj) =
∑
a∈Vz

q(a, Vj). (1)

If the set-discrepancy is greater than zero, then for some vertex a and

some z1, p(a, Vz1) 6= q(a, Vz1). We can assume that

p(a, Vz1) > q(a, Vz1), (2)

since by (1) this implies, and is implied by, the existence of a vertex b in the

same set of split vertices as a such that

p(b, Vz1) < q(b, Vz1). (3)

Using the sets Si(a, b), 1 ≤ i ≤ t, we create a further set, S(a, b). For

1 ≤ i ≤ t, if (c, d) ∈ Si(a, b), then (i, c, d) ∈ S(a, b). So S(a, b) contains

ordered triples (i, c, d) where c is a neighbour of a and d is a neighbour

of b in Fi. Note that there is an obvious one-to-one relationship between

the triples of S(a, b) and the neighbours, over all the factors, of a, and also

between the triples of S(a, b) and the neighbours, over all the factors, of b.

Claim 5 There is a sequence of sets of split vertices

Γ = Vz1 , Vz2 , . . . , Vzm

such that
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(D1) Vzα 6= Vzβ
if α 6= β,

(D2) either p(a, Vzm) < q(a, Vzm) or p(b, Vzm) > q(b, Vzm), and

(D3) for 2 ≤ j ≤ m, there is a triple (ij, cj, dj) ∈ S(a, b) where cj ∈ Vzj−1

and dj ∈ Vzj
.

The claim is proved below. First we use it to reduce δs. For 2 ≤ j ≤ m, we

(a, b)-swap cj and dj in Fij : the edges acj and bdj are deleted and replaced

with the edges adj and bcj. Each new factor Fi obtained is clearly ki-regular

and, by Lemma 4, it is li-edge-connected. It is also a detachment of the

corresponding colour class Hi since the number of edges in the factor between

each pair of sets of split vertices does not change.

For 2 ≤ j ≤ m − 1, an edge from a to a vertex, cj+1, that is in Vzj
,

has been deleted and an edge from a to a vertex, dj, that is in Vzj
has been

added. Thus p(a, Vzj
) is unchanged. Similarly p(b, Vzj

), 2 ≤ j ≤ m − 1, is

unchanged.

The only neighbour of a in Vz1 involved in an (a, b)-swap is c2. The edge

ac2 is deleted so p(a, Vz1) is reduced by 1. Hence, by (2), δs is also reduced by

1. The addition of bc2 causes p(b, Vz1) to increase by 1, so by (3), δs decreases

further by 1.

The only neighbour of b in Vzm involved in an (a, b)-swap is dm. Consider

(D2). If p(a, Vzm) < q(a, Vzm), then the addition of adm causes p(a, Vzm)

to increase by 1, and δs is reduced further by 1. The deletion of bdm may

cause δs to increase by 1, but at worst δs is reduced by 2 overall. The only

other possibility is that p(b, Vzm) > q(b, Vzm), and by a similar argument δs

is reduced overall by at least 2 in this case also.

We show that the factors remain loopless. A loop is put on a only if one

of the triples is (ij, cj, dj) with dj = a. That is, (cj, a) is a pair in Sij(a, b).

Recall that a is the second element of a pair in Si(a, b) only if b is the first

element. But if cj = b, then cj and dj are in the same set of split vertices,

a contradiction by (D1) and (D3). By a similar argument b also remains

loopless.
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Proof of Claim 5: In fact we shall prove that there is a sequence of sets of

split vertices

∆ = Vg1 , Vg2 , . . . , Vgm′

such that

(E1) Vg1 = Vz1 ,

(E2) Vgα 6= Vgβ
if α 6= β,

(E3) either p(a, Vgm′ ) < q(a, Vgm′ ) or p(b, Vgm′ ) > q(b, Vgm′ ), and

(E4) for 2 ≤ j ≤ m′, there is a triple (ij, cj, dj) ∈ S(a, b) where cj ∈ Vgh
for

some h ∈ {1, 2, . . . , j − 1} and dj ∈ Vgj
.

It is easy to see that ∆ has a subsequence that has Vg1 = Vz1 as the first

term and satisfies (D1), (D2) and (D3). (Let Vgm′ be the final term and work

backwards. If Vgα is the last term reached, then if α = 1 the subsequence is

found. Otherwise there is a triple (iα, cα, dα). Let the previous term of the

sequence be the set of split vertices Vgβ
that contains cα. As β < α we must

eventually get back to Vg1 .)

We find ∆. The first term Vg1 = Vz1 was found before the claim was

stated. Suppose that we have found the first ω terms, and that this sequence

of ω terms satisfies (E1), (E2) and (E4) with m′ = ω. If for any α ∈
{1, 2, . . . , ω}

p(a, Vgα) < q(a, Vgα), or

p(b, Vgα) > q(b, Vgα),

then we pick the smallest such α and let ∆ = Vg1 , Vg2 , . . . , Vgα as this also

satisfies (E3). Otherwise, for 1 ≤ j ≤ ω,

p(a, Vgj
) ≥ q(a, Vgj

), (4)

p(b, Vgj
) ≤ q(b, Vgj

). (5)
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Let W = Vg1 ∪ Vg2 ∪ · · · ∪ Vgω . As a and b are in the same set of split

vertices, q(a, Vj) = q(b, Vj), 1 ≤ j ≤ r. Therefore, by (2) and (3), a has

more neighbours than b in Vg1 and, by (4) and (5), a has at least as many

neighbours as b in Vgj
, 2 ≤ j ≤ ω. Therefore over all the factors a has more

neighbours than b in W . Recall that in S(a, b) there is a triple corresponding

to each neighbour of a in each factor; similarly there is a triple corresponding

to each neighbour of b. So there is a triple (iω+1, cω+1, dω+1) ∈ S(a, b), such

that cω+1 ∈ W and dω+1 /∈ W . Let the set of split vertices containing dω+1

be Vgω+1 . Then Vgω+1 6= Vgj
, 1 ≤ j ≤ ω, since Vgω+1 6⊂ W .

We must eventually find a set of split vertices that satisfies (E3): note

that
r∑

j=1

p(a, Vj) =
r∑

j=1

q(a, Vj), (6)

since both sums are equal to n− 1, the sum of the degrees of a taken over all

the factors. As p(a, Vz1) > q(a, Vz1), there is at least one set of split vertices

Vz such that p(a, Vz) < q(a, Vz) and therefore Vz, at least, satisfies (E3). This

completes the proof of Claim 5. 2

We must now show that when (C1) is satisfied we can further alter the

factors so that (C2) is also satisfied. For a pair of distinct vertices a and c, let

p(a, c) be the number of edges in U from a to c. Note that p(a, c) = p(c, a).

Let the vertex-discrepancy δv be defined by

δv =
∑

ac∈E(Kn)

|p(a, c)− 1|.

If (C2) is satisfied, then for all pairs of distinct vertices a and c, p(a, c) = 1,

and the vertex-discrepancy is zero. We describe a method that will reduce

the vertex-discrepancy if it is greater than zero. By applying it repeatedly

we shall obtain a set of factors that satisfies (C2).

We can see that if c is the only vertex in a set of split vertices Vz, then

p(a, c) = 1: let a be some other vertex; as (C1) is satisfied, p(a, Vz) =

q(a, Vz) = f(vz) = 1, and as p(a, c) = p(a, Vz), we already have p(a, c) = 1.
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Claim 6 Suppose that a and b are vertices in the same set of split vertices,

that c1 /∈ {a, b} and that

p(a, c1) > 1, (7)

p(b, c1) < 1. (8)

Let S(a, b) be defined as before. There is a sequence of vertices c1, c2, . . . , cm

such that

(F1) cj /∈ {a, b}, 2 ≤ j ≤ m,

(F2) cα 6= cβ if α 6= β,

(F3) either p(a, cm) < 1 or p(b, cm) > 1, and

(F4) for 1 ≤ j ≤ m− 1 there is a triple (ij, cj, cj+1) ∈ S(a, b).

Proof: The first term of the sequence is known by the hypothesis. Suppose

that we have found the first ω terms and that this sequence satisfies (F1),

(F2) and (F4) with m = ω. If for some h ∈ {1, 2, . . . , ω}

p(a, ch) < 1, or

p(b, ch) > 1,

then choose the smallest such h and let the complete sequence be c1, c2, . . . , ch

since this also satisfies (F3) with m = h. Otherwise, for 1 ≤ j ≤ ω,

p(a, cj) ≥ 1,

p(b, cj) ≤ 1.

As p(a, cω) ≥ 1 we can find a triple (iω, cω, cω+1) ∈ S(a, b). As there are no

loops and cω+1 is a neighbour of b, cω+1 6= b. By (F1), cω 6= b and a is the

second element of a pair in Siω(a, b) only if b is the first element, so cω+1 6= a.

By (8), p(b, c1) = 0, so cω+1 6= c1. As p(b, cj) ≤ 1, 2 ≤ j ≤ ω, there is at most

one triple in S(a, b) with cj as the third element and we have already found

one such triple (namely (ij−1, cj−1, cj)). Therefore cω+1 6= cj, 2 ≤ j ≤ ω.
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The sequence must terminate: there is a finite number of vertices and it

is easily seen that p(a, c1) > 1 implies that for some vertex c, p(a, c) < 1

(that is, if a vertex a is joined too many times to one vertex, then it must

be joined too few times to some other vertex). This completes the proof of

Claim 6. 2

We describe how to use the claim to reduce the vertex discrepancy. First

choose a set of split vertices Vz such that

(C1a) for every vertex c /∈ Vz, p(c, Vj) = q(c, Vj), 1 ≤ j ≤ r.

Note that (C1) implies (C1a) so initially we can choose any set of split vertices

as Vz. If possible choose a pair of vertices a ∈ Vz, c1 /∈ Vz that satisfy (7).

By (C1a) there is a vertex b ∈ Vz, a 6= b, that satisfies (8). Therefore, by

Claim 6, there is a sequence of vertices c1, c2, . . . , cm that satisfies (F1) to

(F4). For 1 ≤ j ≤ m− 1, (a, b)-swap (cj, cj+1) in Fij . For 2 ≤ j ≤ m− 1, we

add acj to Fij−1
and delete acj from Fij , so p(a, cj) is unchanged. Similarly

p(b, cj) is unchanged, 2 ≤ j ≤ m − 1. By (7), the deletion of ac1 reduces δv

by 1, and, by (8), the addition of bc1 reduces δv further by 1. By (F3), the

addition of acm and the deletion of bcm at worst has no net effect on δv. So

overall δv is reduced by at least 2. As cj /∈ {a, b}, 1 ≤ j ≤ m, no loops are

created.

Consider the effect of these (a, b)-swaps on the set discrepancy. Let Vzj

be the set of split vertices that contains cj, 1 ≤ j ≤ m. For 2 ≤ j ≤ m− 1,

p(a, cj) and p(b, cj) were unchanged so p(a, Vzj
) and p(b, Vzj

) are unchanged.

Note that

p(a, Vz1) and p(b, Vzm) are reduced by 1, and (9)

p(a, Vzm) and p(b, Vz1) are increased by 1. (10)

As a, b ∈ Vz, (C1a) remains satisfied. So we can look for further pairs a ∈ Vz,

c1 /∈ Vz that satisfy (7) and repeat the procedure. When no such pairs
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remain we have p(a, c) = 1 for every a ∈ Vz, c /∈ Vz. For 1 ≤ j ≤ r, j 6= z,

p(a, Vj) =
∑
c∈Vj

p(a, c) = |Vj|. Thus p(a, Vj) = q(a, Vj), 1 ≤ j ≤ r, j 6= z. By

(6), this implies that p(a, Vz) = q(a, Vz) also. Thus

(C1b) for every vertex a ∈ Vz, p(a, Vj) = q(a, Vj), 1 ≤ j ≤ r.

Note that (C1a) and (C1b) together imply (C1).

Now if possible choose a pair a ∈ Vz, c ∈ Vz that satisfies (7). By (C1b),

there is a vertex b ∈ Vz that satisfies (8), so we can use the claim and the

method of (a, b)-swapping just described to reduce δv. Note that Vz1 = Vz

(since Vz1 is the set that contains c1) and that Vzm = Vz (since Vzm is the

set that contains cm, cm satisfies (F3) and we know that p(a, c) = 1 for all

a ∈ Vz, c /∈ Vz). Thus (9) and (10) cancel each other out and (C1a) and

(C1b) remain satisfied. Look for further pairs a, c1 ∈ Vz that satisfy (7) and

reduce δv further. When no such pairs remain since (C1a) and (C1b) are

satisfied, (C1) is satisfied and we can begin the process again with another

choice of Vz. Eventually δv is reduced to zero and (C2) is satisfied. This

completes the proof of Theorem 3 2

Proof of Theorem 1: The following four sentences prove the necessity

of (A1) to (A4). The sum, taken over all the factors, of the degrees of a

vertex is equal to its degree in Kn. By the handshaking lemma, a regular

graph with an odd number of vertices has even degree. As the set of all edges

incident with a vertex forms an edge-cutset of a graph, the edge-connectivity

of a graph is at most its minimum degree. A 1-regular graph is a set of

independent edges and is not connected if it has more than 2 vertices.

By Theorem 2, we can show that the conditions are sufficient by finding

an outline (t,K, L)-factorization, H and f . Let V (H) = {v}. Let there be(
n
2

)
loops on v, and let nki/2 of the loops be coloured i, 1 ≤ i ≤ t. Let

f(v) = n. It is easy to check that H and f satisfy (B1) to (B5). 2
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3 Embedding factorizations

Here we answer this question: when can a factorization G1, . . . , Gt of Km be

embedded in a (t,K, L)-factorization F1, . . . Ft of Kn. By embed we mean

that the vertices of Km are identified with m of the vertices of Kn in such

a way that Gi is a subgraph of Fi, 1 ≤ i ≤ t. Note that we can think of

G1, . . . , Gt as the colour classes of a t-edge-colouring of Km. In some cases

a solution to the embedding problem is known. When each li = 0, that is,

when there is no constraint on the connectivity of the factors, the solution

was found by Andersen and Hilton [2] (and independently by Rodger and

Wantland [11]). A solution in the case where each li = 1 was found by

Hilton, Johnson, Rodger and Wantland [6]. Solutions when each li = 2 are

also known: Hilton [4] solved the subcase where each ki = 2, and this was

generalized by Rodger and Wantland [11] (it also follows from a result of

Nash-Williams [9]). Below in Theorem 8 we solve the general case where t,

K and L are required to satisfy (G1) to (G4).

First we need a result about detachments. Recall that, by (B5), if H

is a (t,K, L)-outline factorization, then each Hi (the subgraph induced by

edges coloured i) has an li-edge-connected ki-regular detachment. Theorem 7

is a result of Nash-Williams that characterizes those graphs that have such

detachments (in fact, this is a specialization of a much more general result).

We need some definitions first. Let G be a graph of which we seek to find a

detachment. We define three functions f, c, e: P(V (G)) −→ Z, (P(V (G)) is

the power set of V (G)). For each set of vertices V ⊆ V (G), let f(V ) be the

total number of vertices we wish to split the vertices of V into, let c(V ) be

the number of components in G − V , and let e(V ) be the number of edges

(including loops) that are incident with at least one vertex in V (loops and

edges incident twice with vertices in V are only counted once).

Theorem 7 [10] Let k and l be nonnegative integers. Let G be a graph in

which the degree of each vertex is a multiple of k. Then G has an l-edge-

connected k-regular detachment if and only if
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(X1) G is l-edge-connected,

(X2) if l = 1, then for all V ⊆ V (G), f(V ) + c(V ) ≤ e(V ) + 1,

(X3) if l is odd and l = k, then G has no cutvertex with degree 2l, and

(X4) if l is odd and l = k, then G is not a loopless graph that contains exactly

two vertices each with degree 2l. 2

We need some more definitions before we state the embedding result. Let

ωi be the number of connected components of Gi and let these components

be Ci,1, Ci,2, . . . , Ci,ωi
. Let εi,j =

∑
v∈V (Ci,j)

ki − dGi
(v), and let εi =

ωi∑
j=1

εi,j. Let

ri,j be the number of minimal edge-cutsets of Ci,j that contain fewer than

li edges, let these sets be Ei,j
1 , Ei,j

2 , . . . , Ei,j
ri,j

, and let Ci,j
m1

and Ci,j
m2

be the

connected components of Ci,j − Ei,j
m . Let εi,j,mp =

∑
v∈V (Ci,j

mp )

ki − dGi
(v).

Theorem 8 Let n, t,K and L satisfy (G1) to (G4) and let α = n −m. A

t-edge-coloured Km can be embedded in a (t,K, L)-factorization of Kn if and

only if

(I) dGi
(v) ≤ ki for each v ∈ V (Km), for 1 ≤ i ≤ t,

(II) εi,j ≥ li for 1 ≤ i ≤ t, 1 ≤ j ≤ ωi,

(III) α ≥ max{εi/ki : 1 ≤ i ≤ t},

(IV) for 1 ≤ i ≤ t, if li = 1, then α ≥ 2ωi − εi − 2

ki − 2
,

(V) for 1 ≤ i ≤ t, if li = ki, li is odd and ωi ≥ 2, then α 6= 2, and

(VI) εi,j,mp ≥ li − |Ei,j
m |, for 1 ≤ i ≤ t, 1 ≤ j ≤ ωi, 1 ≤ m ≤ ri,j, 1 ≤ p ≤ 2.

Proof: Necessity: suppose that a t-edge-coloured Km is embedded in an

(t,K, L)-factorization of Kn (so each Gi is a subgraph of a ki regular li-edge-

connected graph Fi). We show that the conditions of the theorem hold.
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For 1 ≤ i ≤ t, as Gi is a subgraph of a ki-regular graph, dGi
(v) ≤ ki for

each v ∈ V (Km). So (I) holds.

By definition, εi,j is the number of edges incident with vertices of Ci,j

in E(Fi) \ E(Gi). These edges all join Ci,j to V (Kn) \ V (Km) and form an

edge-cutset so there must be at least li of them. So (II) holds.

Similarly, εi is the number of edges incident with vertices of Gi in E(Fi)\
E(Gi), and all these edges join Gi to one of the α vertices of V (Kn)\V (Km)

which each have degree ki. Thus εi ≤ kiα. So (III) holds.

If li = 1, then from Fi form a graph J by merging vertices that belong to

the same component in Gi and deleting any loops on these merged vertices.

Thus J contains the α vertices of V (Kn)\V (Km) plus ωi vertices correspond-

ing to the ωi components of Gi. Its edge set contains εi edges corresponding

to the εi edges in Fi that join vertices of V (Km) to vertices of V (Kn)\V (Km).

It also contains the edges of Fi joining pairs of vertices in V (Kn) \ V (Km);

there are (αki−εi)/2 such edges since there are α vertices with degree ki and

all but εi of the sum of their degrees is due to edges joining pairs of these

vertices. As J is connected we must have that |V (J)| ≤ |E(J)| + 1. Thus

α+ ωi ≤ εi + (αki − εi)/2 + 1. Rearranging we see that (IV) holds.

Suppose that α = 2 and li = ki is odd. If ωi ≥ 2, then Ci,1 and Ci,2

are two components of Gi. There must be ki distinct paths from Ci,1 to Ci,2

which each go through V (Kn) \ V (Km) = {w1, w2}. We can assume that at

least

⌈
ki

2

⌉
of these paths contain w1. But then dFi

(w1) ≥ 2

⌈
ki

2

⌉
= ki + 1, a

contradiction. So (V) holds.

For 1 ≤ i ≤ t, 1 ≤ j ≤ ωi, 1 ≤ m ≤ ri,j, there must be li distinct

paths from Ci,j
m1

to Ci,j
m2

. We know that |Ei,j
m | of these paths are in Ci,j. The

remainder must go through V (Kn) \ V (Km). Therefore there must be at

least li − |Ei,j
m | edges from each of Ci,j

m1
and Ci,j

m2
to V (Kn) \ V (Km). So

(VI) holds as εi,j,mp is the number of edges incident with vertices of Ci,j
mp

in

E(Fi) \ E(Gi).

Sufficiency: to complete the proof we must show we can find an em-

bedding if the six conditions hold. From Km we form H and f , an outline
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(t,K, L)-factorization of Kn. Let V (H) = V (Km) ∪ {v0}. Let f(v0) = α, let

f(v) = 1 for all v ∈ V (Km). The edge set of H contains the edges of Km

(which are already coloured) and

• for 1 ≤ i ≤ t, for each v ∈ V (Km), there are ki − dGi
(v) edges coloured

i from v0 to v, and

• for 1 ≤ i ≤ t, there are (αki − εi)/2 loops coloured i on v0.

If we can prove that H and f are an outline (t,K, L)-factorization of Kn,

then the proof is completed by applying Theorem 2 since any (t,K, L)-

factorization F1, . . . , Ft of Kn of which H and f is an amalgamation is such

that Gi is a subgraph of Fi.

First we check that the number of loops added of each colour is an integer.

As α = n−m,

αki − εi

2
=

(n−m)ki − εi

2

=
kin

2
− εi −

kim− εi

2
which is an integer since kin is even (by (G2)) and (kim− εi)/2 = |E(Gi)|.

We must show that H and f satisfy (B1) to (B5).

For v, w ∈ V (Km), there is 1 = f(v)f(w) edge joining v to w. For

v ∈ V (Km), the number of edges from v to v0 is

t∑
i=1

(ki − dGi
(v)) =

t∑
i=1

ki −
t∑

i=1

dGi
(v)

= (n− 1)− (m− 1)

= α

= f(v)f(v0).

So (B1) is satisfied.

For v ∈ V (Km) there are 0 =
(

f(v)
2

)
loops on v. The number of loops on

v0 is
t∑

i=1

αki − εi

2
=

t∑
i=1

αki

2
−

t∑
i=1

∑
v∈V (Km)

ki − dGi
(v)

2

22



by the definition of εi. The order in which we evaluate the double sum is not

important, and

t∑
i=1

αki

2
−

∑
v∈V (Km)

t∑
i=1

ki − dGi
(v)

2
=

α(n− 1)

2
−

∑
v∈V (Km)

(n− 1)− (m− 1)

2

=
α(n− 1)

2
−

∑
v∈V (Km)

α

2

=
α(n− 1)

2
− αm

2

=
α(n− 1−m)

2

=
α(α− 1)

2

=

(
α

2

)
=

(
f(v0)

2

)
.

So (B2) is satisfied.

For v ∈ V (Km) there are dGi
(v) + (ki − dGi

(v)) = ki = kif(v) edges of

each colour incident with v. The number of edges of each colour incident

with v0 is  ∑
v∈V (Km)

(ki − dGi
(v))

 + αki − εi = εi + αki − εi

= αki

= kif(v0).

So (B3) is satisfied.

As
∑

v∈V (H)

f(v) = m+ α = m+ n−m = n, (B4) is satisfied.

Finally to show that (B5) is satisfied we must show that each Hi has an

li-edge-connected ki-regular detachment. Thus we must show that each Hi

satisfies (X1) to (X4).
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First we show that each Hi is li-edge-connected. Suppose that Hi is not

li-edge-connected. Then there is a minimal edge-cutset E such that |E| < li.

As E is minimal it will contain only edges from one component of Gi, say

Ci,1, and perhaps also edges from v0 to Ci,1. It cannot contain only edges

from v0 to Ci,1 since it would need to contain all of them and there are∑
v∈V (Ci,j)

(ki − dGi
(v)) = εi,j such edges and, by (II), εi,j ≥ li. The edges of

E contained in Ci,1 form one of its minimal separating sets, say Ei,1
1 , and

we can assume that the two components of Hi − E are Ci,1
11

and Hi − Ci,1
11

.

Therefore E must also contain all the edges from Ci,1
11

to v0. There are∑
v∈V (C

11
i,1)

(ki − dG1(v)) = εi,1,11 such edges. So

|E| = |Ei,1
1 |+ εi,1,11

≥ li,

by (VI), a contradiction. So each Hi satisfies (X1).

We show that (X2) is satisfied. First consider V ⊆ V (Hi) such that

v0 /∈ V . Thus f(V ) = |V |. From Hi form a graph J by merging vertices that

belong to the same component of Hi − V and deleting any loops on these

merged vertices. Thus J has f(V ) + c(V ) vertices and as it is connected,

f(V ) + c(V ) = |V (J)| ≤ |E(J)|+ 1

≤ e(V ) + 1.

So (X2) is satisfied in this case. Now let V = {v0}. So f(v) = α, c(V ) = ωi

and e(V ) = εi+(kiα−εi)/2. Then (X2) can be shown to hold by rearranging

the inequality given in (IV). If {v0} ⊂ V , then label the other vertices of V

so that V = {v0, v1, . . . , vs}. We have just seen that {v0} satisfies (X2) so

we can show that V satisfies (X2) by proving that if V ′ = {v0, v1, . . . , vσ},
σ < s, satisfies (X2), then so does V ′′ = {v0, v1, . . . , vσ+1}. This is done by

examining how f , c and e change when the argument V ′ is replaced by V ′′.

The change in f is clearly +1. Let C be the component of J −V ′ containing
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vσ+1, and let x be the number of components of C − vσ+1. So the change

in c is +(x − 1). As vσ+1 is joined by at least one edge to each of the x

components of C−vσ+1, there at least x edges incident with V ′′ but not with

V ′. So the change in e is at least +x. So e increases by at least as much as

f + c. Thus (X2) remains satisfied.

The only vertex that can have degree 2ki in Hi is v0. It is a cutvertex

if Gi has more than one component. By (V), if li = ki and li is odd, then

α 6= 2 and so dHi
(v0) 6= 2li. So (X3) is satisfied.

Finally, (X4) is satisfied since each Hi contains only one vertex with

degree greater than ki. 2
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