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Abstract

We investigate defining sets for latin squares where we are given that
the latin square is the Cayley table for some group. Our main result is
that the proportion of entries in a smallest defining set approaches zero
as the order of the group increases without bound.

1 Introduction

A latin square of order n is an n× n array with entries chosen from a set N of
size n such that each element of N occurs exactly once in each row and column.
The Cayley table of a group G is a latin square and we will use G to denote
both the group and its Cayley table. Without loss of generality we may take
N = {1, 2, . . . , n} and assume that rows and columns are indexed by N . We
may also represent a latin square by a set of n2 triples (i, j, k) such that element
k appears in row i and column j.

A partial latin square P of order n is an n×n array with entries chosen from
a set N of size n such that each element of N occurs at most once in each row
and column. We shall also use the corresponding set of triples to represent a
partial latin square.

If (θ, φ, ψ) are permutations on N , then the (θ, φ, ψ)-isotope of P is denoted
and defined by (θ, φ, ψ)P = {(θ(i), φ(j), ψ(k)) : (i, j, k) ∈ P}.

If {a, b, c} = {1, 2, 3}, then the (a, b, c)-conjugate of P is denoted and defined
by P(a,b,c) = {(xa, xb, xc) : (x1, x2, x3) ∈ P}.
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The set of all partial latin squares isotopic to a given partial latin square P
is called the isotopy class of P ; the isotopy class of P together with all of the
conjugates of its members forms the main class of P and will be denoted M(P ).
For the Cayley table of a group it is known that its isotopy and main classes
are equal.

A set of triples defining a partial latin square, P , of order n is uniquely
completable (UC), or a defining set, if there is only one latin square, L, of order
n that contains P . If L is the only latin square in the main class M(L) that
contains P , then we will say that P is uniquely completable in M(L). A UC
set is critical (in M(L)) if none of its proper subsets is UC (in M(L)). It is
immediate that P is UC (in M(L)) to L if and only if ((θ, φ, ψ)P )(a,b,c) is UC
(in M(L)) to ((θ, φ, ψ)L)(a,b,c). We define the density of a partial latin square
of order n to be its size divided by n2.

At present it is not known whether any latin square of order n has a critical
set smaller than bn2/4c; Mahmoodian [8] and Bates and van Rees [1] have
independently conjectured that no such latin square exists. With regard to
group-based latin squares Donovan et al [4] have proved that the density of a
critical set for Cr

2 is at least 3/8, and in [5] Keedwell conjectured that for all
group-based latin squares, except those based on a cyclic group, the density of
a smallest critical set tends to 1/2 as the order of the square tends to infinity.
In this paper we construct the smallest critical sets in M(C2×C2) and M(C5),
and prove that if G is a group of order n, then the density of a smallest defining
set in M(G) approaches 0 as n → ∞. The latter result is extended to unique
completion within the set of all group-based latin squares of order n. Finally we
show that Keedwell’s conjecture is false by constructing a defining set of density
7/16 for each member of an infinite class of non-cyclic groups.

2 Critical sets in M(C2 × C2) and M(C5)

In [6] Keedwell considered the problem of finding critical sets for orthogonal
latin squares and, as part of his investigations, showed that four entries are
sufficient to define a partial latin square of order 4 that completes to exactly
one isotope of C2 × C2 (in [7] Keedwell had previously shown that a smallest
critical set for C2 × C2 has size 5). In our terminology Keedwell showed that
there exists a set of size 4 that is UC in M(C2 × C2). Keedwell’s example is
displayed below.

1 3

2
4

Keedwell’s argument for unique completion in M(C2 × C2) was to show that
there are exactly three latin squares of order 4 that contain the above partial
latin square and that two of these are isotopic to C4 leaving just one isotopic to
C2 × C2. We will give an alternative argument using the following lemma.
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Lemma 1 In M(Cr
2) every pair of elements from the same row (or column)

lies in an intercalate (i.e. a 2× 2 latin subsquare).

Proof: Since Cr
2 is a group and latin subsquares are preserved by isotopy, it

is sufficient to establish the result for Cr
2 . Suppose that the cells (a, f), (a, g)

contain x and y respectively. Let (b, f) be the cell containing y in column f .
So af = x, ag = y, bf = y. Since in Cr

2 every element is its own inverse, b = yf
and g = ay. It follows that bg = (yf)(ay) = af = x.

Returning to Keedwell’s example: the entries (1, 4, 4) and (1, 2, 2) may be
filled in immediately and, by Lemma 1, consideration of the four corner cells
leads to the entry (4, 4, 1); similarly we must have (3, 2, 4). The resulting partial
latin square is UC.

Keedwell did not show that no smaller set can be UC in M(C2 × C2) but
since such a set must cover at least 3 rows, 3 columns and 3 symbols, any such
set of size 3 is isotopic to P (shown below) which is contained in the two distinct
members of M(C2 × C2) displayed alongside P .

P :

1
2

3

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

It is well known that the smallest critical set for C5 has size 6; in [6] Keedwell
made the following conjecture.

A smallest UC set in M(C5) has size 6.

By exploiting the concepts of isotopy and conjugacy it is possible to prove this
conjecture without the aid of a computer.

Theorem 1 No set of 5 (or fewer) entries is UC in M(C5).

Proof: The following are all members of M(C5):

1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5

1 3 2 5 4
4 2 5 1 3
5 4 3 2 1
3 5 1 4 2
2 1 4 3 5

3 4 5 2 1
4 2 1 5 3
2 5 3 1 4
5 1 4 3 2
1 3 2 4 5

L1 L2 L3

1 4 3 2 5
2 1 4 5 3
3 5 2 4 1
5 2 1 3 4
4 3 5 1 2

1 4 3 5 2
3 1 5 2 4
5 3 2 4 1
4 2 1 3 5
2 5 4 1 3

1 5 3 4 2
3 1 4 2 5
4 3 2 5 1
5 2 1 3 4
2 4 5 1 3

L4 L5 L6
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[Note that the latin squares of order 5 partition into two main classes and that
L ∈ M(C5) if and only if L does not contain an intercalate.]

Any putative UC set in M(C5) of 5 entries must cover at least 4 distinct
rows, columns and symbols. We need to identify the main classes of partial latin
squares of this type; by conjugacy it is sufficient to consider the following cases.

Case 1: exactly 5 rows, 5 columns and 5 elements covered.

Case 2: exactly 4 rows, 5 columns and 5 elements covered.

Case 3: exactly 4 rows, 4 columns and 5 elements covered.

Case 4: exactly 4 rows, 4 columns and 4 elements covered.

For each main class of partial latin squares we will either show that its members
do not complete in M(C5) or write down a representative of the class that
completes to two members of L1, . . . , L6.

Case 1: Any such partial latin square is isotopic to the following which
completes to both L1 and L2.

1
2

3
4

5

Case 2: Any such partial latin square is isotopic to

1
2

3
4 5

This does not complete in M(C5) because Cn for odd n has the property that
any set of n − 1 cells from distinct rows and columns and containing distinct
elements extends to a transversal (i.e. a set of n cells from distinct rows and
columns and containing distinct elements).

In cases 3 and 4 we distinguish between two types of partial latin square
containing 5 entries in 4 rows and 4 columns. Those of type (a) have one entry
with the property that there are further entries in the same row and column.
The remaining partial latin squares are of type (b). We illustrate these types
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below where * denotes a non-empty cell.

∗ ∗
∗

∗
∗

∗
∗

∗ ∗
∗

Type (a) Type (b)

Case 3: Up to isotopism there is only one partial latin square of each of types
(a) and (b), the following representatives each have two distinct completions
among L1, . . . , L6.

1 5
2

3
4

4
2

3 1

5

Case 4: The partial latin squares of type (a) partition into 4 main classes; a
representative that completes to two members of L1, . . . , L6 is given below for
each class. Note that we may permute rows and columns so that 4 non-empty
cells lie on the main diagonal; there is one main class when the entries in these
cells are distinct and three where an element is repeated. In the latter case
the three classes are distinguished by the number of times that the repeated
element occurs in the row and column containing the non-empty cell off the
main diagonal.

1 2
2

3
4

1 4
1

2
3

1
1 4

2
3

1
1

2 4
3

There are two non-isotopic partial latin squares of type (b) but they are (3, 1, 2)-
conjugate to latin squares of type (a). We give representatives from each isotopy
class with the property that their (3, 1, 2)-conjugates appear above:

1
2

3 2
4

1
2

3
4 3

3 Defining sets in group-based latin squares

In this section we prove that for a group G the density of a smallest critical
set in M(G) approaches 0 as the order of G increases without bound. In
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fact the partial latin squares we construct have the stronger property that
they are UC over all group-based latin squares. A fundamental property of
a group-based latin square is the so called quadrangle criterion which states
that a latin square L is based on a group if and only if for all pairs of sets
{(h1, j1, a), (h1, k1, b), (i1, j1, c), (i1, k1, d)} and {(h2, j2, a), (h2, k2, b), (i2, j2, c),
(i2, k2, x)} we have that x = d (see [3] for details). In the following theorem
we construct partial latin squares that complete to a group-based latin square
by considering quadrangles only. Such a partial latin square is not only UC in
M(G) but also UC over all group-based latin squares. In Theorem 3 we prove
that the density of this partial latin square tends to 0 as the order of the group
increases without bound.

Theorem 2 Let G be a group of order n with a set of generators of size k.
Then there is a partial latin square of order n with n + (n − 1)(k + 1) entries
which is uniquely completable to a Cayley table of G, given that we know that
the partial latin square must complete to the Cayley table of some group.

Proof: Let {g1, g2, . . . , gk} be a set of generators of G. To construct the partial
latin square take the Cayley table of G and delete all of the entries apart from
one complete row and all occurrences of elements from {e, g1, g2, . . . , gk}. This
gives a partial latin square with n + (n− 1)(k + 1) entries.

As we know that the full latin square must be the Cayley table of a group
we can use the quadrangle criterion to fill in entries of the square.

Suppose we have all occurrences of x and y for some x, y ∈ G. Then we have
the full quadrangle

u−1 u−1y
xu x xy
u e y

for some u, where x and xy are entries in the full row of our partial latin square.
We can now use the quadrangle criterion to fill in the remaining n−1 occurrences
of xy.

Let g ∈ G, then g = gi1gi2 · · · gim for some m, where the gij are generators.
As we have all occurrences of the generators we can fill in all occurrences of
gi1gi2 and then all occurrences of gi1gi2gi3 and so on until finally all occurrences
of g are entered. This applies to any g ∈ G so the partial latin square completes
to the Cayley table of G as required.

Theorem 3 Let G be a group of order n and k be the size of a minimal set of
generators of G. Then

lim
n→∞

n + (n− 1)(k + 1)
n2

= 0.

Proof: Let {g1, g2, . . . , gk} be a minimal set of generators of G. There are 2k

elements of the form gi1gi2 · · · gim where 0 ≤ m ≤ k and ij < ij′ whenever
j < j′. These elements must all be different or we would be able to reduce the
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size of the set of generators (for example, if g1g2 = g3g4 then g1 = g3g4g2
−1 and

we could omit g1 from the set of generators).
So we have that k ≤ log2 n and hence

lim
n→∞

n + (n− 1)(k + 1)
n2

≤ lim
n→∞

2n + n log2 n− log2 n− 1
n2

= 0.

In [10] Weaver has used the above result and a consideration of special cases to
show that every group of order n > 8 has a defining set over group-based latin
squares of size less than bn2/4c.

4 Keedwell’s conjecture

As previously stated, Keedwell [5] has conjectured that for all group-based latin
squares, except those based on a cyclic group, the density of a smallest critical
set tends to 1/2 as the order of the square tends to infinity. To disprove this
conjecture we consider C2 × Cm for even m. We way write the Cayley for
C2 × Cm as follows:

Cm C1
m

C1
m Cm

where C1
m is the array obtained by adding m to each entry of Cm. It is easy to

see that
Pm P 1

m

P 1
m Cm

is a defining set for C2 × Cm where Pm = {(i, j, (i + j) mod m : i + j < (n −
1)/2 or i + j ≥ (3n− 1)/2} and P 1

m is the array obtained by adding m to each
entry of Pm. The density of the above partial latin square is 7/16 for all m (Pm

is the well known critical set for Cm of density 1/4 introduced by Nelder [9] and
shown to be critical by Curren and van Rees [2]).

The above reasoning may be extended in various ways to cover other direct
products of cyclic groups and non-cyclic groups with a subgroup of index 2, but
the above is sufficient for our purposes.
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