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1 Introduction

In this paper G will denote a finite simple connected graph and L will denote
a list assignment to the vertices of G, that is, a function from V (G) to the
collection of finite subsets of a set (of colours), C. A proper L-colouring
of G is a selection φ(v) ∈ L(v) for all v ∈ V (G) such that if u and v are
adjacent vertices in G, then φ(u) 6= φ(v). In other words, φ: V (G) −→ C is
a proper L-colouring if for each σ ∈ C, φ−1(σ) = {v ∈ V (G) : φ(v) = σ} is
an independent set of vertices in G.

Let α(σ,L, H) be the independence number of the subgraph of a graph
H induced by the set of vertices {u ∈ V (H) : σ ∈ L(u)}. Then α(σ, L,H)
is not less than the largest number of vertices that can be coloured with σ

in a proper L-colouring of H. Thus if H has a proper L-colouring we must
have

|V (H)| ≤
∑

σ∈C

α(σ, L,H). (1)

We say that G and L satisfy Hall’s condition if and only if (1) is satisfied
for every subgraph H of G. Hall’s condition is obviously necessary for the
existence of a proper L-colouring of G. In fact, for G and L to satisfy
Hall’s condition it can be seen that it suffices that (1) holds for all induced
subgraphs of G. The reason for the name of the condition is that in the
case where G is a clique, a proper L-colouring of G is also a system of
distinct representatives (SDR) of the sets L(v), v ∈ V (G), and in this case
Hall’s condition is equivalent to the necessary and sufficient condition for
the existence of an SDR given in the famous theorem of Phillip Hall [3].

The Hall number of a graph G, denoted h(G), is the smallest integer m

such that there is a proper L-colouring of G whenever |L(v)| ≥ m for all
v ∈ V (G) and Hall’s condition is satisfied. The problem of which graphs
have Hall number 1 was settled by Hilton and P. D. Johnson.

Theorem 1 [4] A graph G has Hall number 1 if and only if every block of
G is a clique.

The main result of this paper is a characterization of graphs with Hall
number 2. This result is the culmination of the work of a number of authors,
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particularly Eslahchi, Hilton, P. D. Johnson and Wantland [2, 4, 7], on whose
results we rely greatly. We observe in passing that Eslahchi has characterized
the line graphs with Hall number 2 [1].

Why do we study Hall numbers? There are two reasons. First, as the
name of the numbers suggests, we are interested in discovering more on
systems of distinct representatives, and looking at how generalizations of
Hall’s theorem can be developed. Second, the reason for looking at Hall
numbers in terms of graph colourings is their relation to the choice and
chromatic numbers. The choice number c(G) is the smallest integer m such
that there is a proper L-colouring of G whenever |L(v)| ≥ m for all v ∈ V (G).
It is clear that c(G) ≥ χ(G), the chromatic number of G, but determining
for which graphs G, c(G) = χ(G) is an open problem. The relation of Hall
numbers to this problem is detailed in [5, 6]. One result is that c(G) = χ(G)
if and only if h(G) ≤ χ(G). So the problem of characterizing graphs G

such that h(G) ≤ k for any integer k is of definite interest in the quest for
solutions to the equation c(G) = χ(G). In particular, h(G) ≤ 2 implies that
c(G) = χ(G).

2 Results

First we discuss definitions and notation. Let m1, . . . , mk be positive inte-
gers, at most one of which is 1. Then θ(m1, . . . , mk) is the graph constructed
by joining two vertices by k internally disjoint paths of lengths m1, . . . , mk.
Let k ≥ 2 and a1, . . . , ak be positive integers such that m =

∑k
i=1 ai ≥ 3.

Then the partial wheel graph W (a1, . . . , ak) is the graph that contains the
cycle Cm plus one other vertex that is adjacent to k of the vertices in the
cycle where the paths around the cycle between vertices of degree 3 are, in
one orientation of the cycle, of lengths a1, . . . , ak. The edges not in the cycle
are called radial edges. Let r1, . . . , rk be positive integers. Then the partial
wheel-like graph WL(r1, . . . rk; a1, . . . , ak) is obtained from W (a1, . . . , ak) by
replacing the radial edge that is incident with the vertex that lies between
arcs of lengths aj−1 and aj (subtraction is modk) by a path of length rj .
Examples of a partial wheel graph and a partial wheel-like graph are dis-
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Figure 1: W (2, 3, 1, 2) and WL(3, 1, 2, 2; 2, 3, 1, 2)

played in Figure 2.
If a path of length m is added to a graph G between two vertices u and v

of G, then the graph obtained is called G with an ear of length m (attached
to u and v). If m = 2 and u and v are adjacent in G, then the new graph
can also be called G with a triangle based on uv. Let G and H be graphs,
let l be a nonnegative integer. Then cuff (G,H, l) is the graph obtained by
joining G and H by a path of length l; sometimes it is necessary to specify
the vertices at which the path is attached to G and H.

The core of a graph is the subgraph obtained by successively removing
vertices of degree 1 until none remain. A block of a graph is a maximal
connected subgraph with no cutvertices.

We present the main theorem of this paper.

Theorem 2 The core of a connected graph has Hall number 2 if and only
if the core is one of the following graphs:

1. Cn, n ≥ 4,

2. θ(m, 2, 1), m ≥ 2,

3. θ(m, 2, 2), m ≥ 2,

4. θ(3, 3, 2),

5. K4 with an ear of length 2,
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6. any cycle of even length with two triangles based on non-adjacent edges
of the cycle, or

7. a graph G with at least two blocks in which every block is either a
clique, θ(2, 2, 1) or K4 with an ear of length 2; at least one block is
not a clique; and if a block is θ(2, 2, 1) or K4 with an ear, then the
only vertices in the block that can be cutvertices in G are the vertices
of degree 2.

Theorem 3 A graph has Hall number 2 if and only if its core has Hall
number 2.

The combination of Theorems 2 and 3 gives a characterization of graphs
with Hall number 2.

Proof of Theorem 3: Sufficiency was proved in [7, Corollary 2]. If the
core of a graph has Hall number 1, then the graph has Hall number 1 (The-
orem 1). It is easy to show (and was proved in [6]) that h is monotone with
respect to taking induced subgraphs; that is, if H is an induced subgraph
of G, then h(H) ≤ h(G). Therefore if the core of a graph has Hall number
greater than 2, then the graph has Hall number greater than 2. 2

Notice that we can divide the graphs in Theorem 2 into those with one
block (1-6), and those with two or more blocks (7) (a graph with no blocks
in its core has Hall number 1). The graphs with one block have previously
been shown to have Hall number 2.

Theorem 4 [2, 6] The following graphs have Hall number 2:

1. Cn, n ≥ 4,

2. θ(m, 2, 1), m ≥ 2,

3. θ(m, 2, 2), m ≥ 2,

4. θ(3, 3, 2),
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5. K4 with an ear of length 2,

6. any cycle of even length with two triangles based on non-adjacent edges
of the cycle.

In the next section we shall show that there is no other core of a graph
with one block with Hall number 2. In the final section we complete the
proof of Theorem 2 by considering graphs with more than one block in their
core.

We need to know how to show that a graph has Hall number greater
than 2. As h is monotone with respect to taking induced subgraphs, for
each positive integer k, the collection of graphs with Hall number at most k

has a “forbidden-induced-subgraph” characterization: if we define a graph
H to be Hall-k+-critical if and only if h(H) > k but h(H − v) ≤ k for every
v ∈ V (H), then h(G) ≤ k if and only if G has no Hall-k+-critical induced
subgraph. Thus the quest for a characterization of graphs with Hall number
2 has centred on a search for Hall-2+-critical graphs; many have been found.

Theorem 5 [2, 6, 7] The following graphs are Hall-2+-critical:

1. θ(m1,m2,m3), m1 ≥ m2 ≥ m3, m2 ≥ 3 except when (m1,m2,m3) =
(3, 3, 2),

2. θ(m, 2, 2, 1) and θ(m, 2, 2, 2), m ≥ 2, and θ(3, 3, 2, 2).

3. K5 with an ear of length 2,

4. K4 with an ear of length m, m ≥ 3,

5. K4 with two disjoint ears each of length 2,

6. two K4’s intersecting in a K2,

7. K5 minus an edge,

8. any cycle with two triangles based on adjacent edges of the cycle,

9. any cycle with two triangles based on the same edge of the cycle,
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10. any cycle of odd length with two triangles based on non-adjacent edges
of the cycle,

11. any cycle of even length with three triangles based on non-adjacent
edges of the cycle,

12. G1 =
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where P1, P2 and P3 are paths such that either two of them are single
edges or the lengths of all three have the same parity,

13. W (a1, a2, 1), for any (a1, a2) except (1, 1),

14. W (1, 1, 1, 1),

15. WL(r1, r2, r3; 1, 1, 1), r1 ≥ 2,

16. WL(r1, 1, 1; a1, 1, a3), r1 ≥ 2, a1 + a3 ≥ 3,

17. WL(r, 1, 1; 1, a, 1), r ≥ 2, a ≥ 2,

18. WL(2, 2, 1; 1, 2, 2),

19. G2 =
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20. G3 =
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23. Cuff (Cm1 , Cm2 , l), m1 ≥ 4, m2 ≥ 3, l ≥ 0

24. Cuff (θ(2, 2, 1),K3, l), l ≥ 0, provided the point of attachment of the
joining path to θ(2, 2, 1) is one of the vertices of degree 3,

25. Cuff (θ(m, 2, 1),K3, l), m ≥ 3, l ≥ 0, provided the point of attachment
of the joining path to θ(m, 2, 1) is the vertex of degree 2 in θ(m, 2, 1)
that is adjacent to the 2 vertices of degree 3,

26. Cuff (K4 with an ear of length 2, K3, l), l ≥ 0, provided the point of
attachment of the joining path to K4 with an ear of length 2 is one of
the vertices of degree 3 in K4 with an ear of length 2.

We have found some more Hall-2+-critical graphs.

Theorem 6 The following graphs are Hall-2+-critical:
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1. C3 with two ears on adjacent edges,

2. C4 with a triangle based on one edge and an ear of length m, m ≥ 2,
attached to non-adjacent vertices.

3. G6 =

¡
¡

¡
¡

@
@

@
@¡

¡
¡

¡

@
@

@
@¡

¡
¡

¡

@
@

@
@¡

¡
¡

¡

@
@

@
@r

r

r

r

r

r

r

4. G7 =

HHHH

©©©©

©©©©

HHHH

r

r

r
r

r
r

r

5. G8 =

HHHH

©©©©

©©©©

HHHH

r

r

r
r

r
r

r

r

6. G9 =

¡
¡

¡
¡

¡¡

Q
Q

Q
Q

QQ´
´

´
´

´́

B
B

B
B

BB@@

¢
¢
¢
¢@

@
@

@
@@r

r

r

r

r r

Proof: To prove that a graph G is Hall-2+-critical it is necessary to prove
that h(G − v) ≤ 2 for every v ∈ V (G), and that h(G) > 2. The first part
is left to the reader: he should refer to Theorems 1, 3 and 4. To show that
h(G) > 2 we must find a list assignment L such that

• |L(v)| ≥ 2 for all v ∈ V (G),
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Figure 2: C3 with two ears and C4 with a triangle and an ear

• L and G satisfy Hall’s condition, and

• G does not have a proper L-colouring.

We shall give list assignments (in word form), but then it is again left to
the reader to check that the graphs and lists satisfy Hall’s condition but do
not permit a colouring. Note that a Hall-2+-critical graph G, satisfies Hall’s
condition if and only if (1) holds with H = G, and the graphs G− v, for all
v ∈ V (G), have a proper L-colouring.

For C3 with two ears see Figure 2. We must describe the list assignments
for the internal vertices of the ears. If P1 has odd length, then the vertex ad-
jacent to u has assignment 12, the next vertex along the path has assignment
23, and any remaining vertices have assignment 13. If P2 has odd length,
then the vertex adjacent to v has assignment 12, the next vertex along the
path has assignment 23, and any remaining vertices have assignment 13. If
P1 or P2 has even length, then every vertex has assignment 13.

For C4 with a triangle based on one edge and an ear attached to non-
adjacent vertices see Figure 2 again. We describe the list assignments for the
internal vertices of the ear. If P is of odd length, then the vertex adjacent to
u has assignment 12, the next vertex has assignment 23, and any remaining
vertices have assignment 13. If P is of even length, then every internal
vertex on that ear has assignment 13.

For G6, G7, G8 and G9 see Figure 3. 2
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Figure 3: G6, G7, G8 and G9

Theorem 7 [7] Except for K4, every partial wheel graph with 3 or more
radial edges has Hall number greater than 2.

Theorem 7 follows easily from Theorem 5, but it is useful to state it sep-
arately since when trying to prove that a graph has Hall number greater
than 2, it can sometimes be difficult to pick out an induced Hall-2+-critical
subgraph, while finding an induced partial wheel graph may be straightfor-
ward.

We shall prove Theorem 2 by showing that every graph’s core has Hall
number 1 or 2, or has an induced subgraph that is one of the Hall-2+-critical
graphs listed in Theorems 5 and 6. Thus we claim to have a complete list
of Hall-2+-critical graphs.
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3 Graphs with one block in their core

We shall show that the only 2-connected graphs with Hall number 2 are

1. Cn, n ≥ 4,

2. θ(m, 2, 1), m ≥ 2,

3. θ(m, 2, 2), m ≥ 2,

4. θ(3, 3, 2),

5. K4 with an ear of length 2,

6. any cycle of even length with two triangles based on non-adjacent
edges of the cycle.

Combined with Theorems 3 and 4, this will give a complete characterization
of graphs with one block in their core with Hall number 2.

We need a lemma.

Lemma 8 Let H be an induced subgraph of a 2-connected graph G where
|V (H)| ≥ 2. If G 6= H, then there exists an induced subgraph of G, H ′, such
that either

1. H ′ is H with an ear of length p, p ≥ 3, or

2. H ′ is H plus another vertex adjacent to q vertices in H, q ≥ 2.

Equivalently, we can write p ≥ 2 and q ≥ 3.

Proof: If G 6= H, then there is a vertex v ∈ V (G) \ V (H) that is adja-
cent to at least one vertex in H. If v is adjacent to more than one vertex
in H, then we let H ′ be the subgraph of G induced by V (H) ∪ {v}. If v is
adjacent to exactly one vertex x of H, then there must be at least one path
from v to another vertex of H else G − x is not connected. Let P be the
shortest such path. Let u be the last vertex not in H as we move along P

from v to H. If u is adjacent to more than one vertex in H, then we let H ′
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be the subgraph of G induced by V (H)∪{u}. If u is adjacent to exactly one
vertex in H, then we let H ′ be the subgraph of G induced by V (H)∪V (P ).
This is H with an ear since if a vertex on the path other than u and v was
adjacent to a vertex of H, then P would not be the shortest possible path. 2

Let G be a 2-connected graph. We know that G has Hall number 1 only if
it is a clique. We must prove that if G it is not a clique or one of the graphs
listed at the start of the section, then it has Hall number greater than 2. To
do this we show that we can find an induced subgraph of G that is one of
the graphs with Hall number greater than 2 listed in Theorems 5, 6, and 7.
We call these graphs forbidden.

As G is 2-connected it has an induced subgraph that is a cycle. If G

is a cycle, then h(G) ∈ {1, 2}. Suppose that G is not a cycle. Then by
Lemma 8 we can find another induced subgraph of G that is either a cycle
with an ear of length at least 2, or a cycle with a further vertex joined to
3 or more vertices of the cycle. In the former case the induced subgraph is
θ(m1, m2,m3) which is forbidden unless it is θ(3, 3, 2), θ(m, 2, 2), m ≥ 2, or
θ(m, 2, 1), m ≥ 2 (Theorem 5.1). In the latter case the induced subgraph
is W (a1, . . . , ak), k ≥ 3, which is forbidden unless it is K4 (Theorem 7).
Therefore G has Hall number greater than 2 except possibly if it has an
induced subgraph H where

1. H = K4,

2. H = θ(3, 3, 2)

3. H = θ(m, 2, 2), m ≥ 2, or

4. H = θ(m, 2, 1), m ≥ 2.

We consider the four cases separately.

Case 1: H = K4.

If G = K4, then h(G) = 1. Suppose that G 6= K4. Then by Lemma 8
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we can find an induced subgraph of G, H ′, that is either K4 with an ear of
length p, p ≥ 3, or K4 with one further vertex joined to 2 or more of the
vertices of K4. In the first case H ′ is forbidden (Theorem 5.4). In the latter
case H ′ is K4 with an ear of length 2, K5 minus an edge or K5, when the
further vertex is joined to 2, 3 or 4 of the vertices of K4 respectively. As K5

minus an edge is forbidden (Theorem 5.7), G has Hall number greater than
2 except possibly if it has an induced subgraph H ′ where

1. H ′ = K4 with an ear of length 2, or

2. H ′ = K5.

We consider the two subcases separately.

Subcase 1a: H ′ = K4 with an ear of length 2.

If G = H ′, then h(G) = 2. We shall show that if G 6= H ′, then G has
an induced subgraph with Hall number greater than 2. By Lemma 8 we can
find an induced subgraph of G, H ′′, that is either H ′ with an ear of length
p, p ≥ 3, or H ′ with a further vertex joined to 2 or more vertices of H ′. Let
the vertices of H ′ be labelled as shown below.
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Suppose that H ′′ is H ′ with an ear of length at least 3. If the ear is at-
tached to 2 vertices other than y, then the subgraph of H ′′ induced by every
vertex but y is K4 with an ear of length greater than 2 which is forbidden
(Theorem 5.4). Up to isomorphism, there are two other ways of attaching
the ear. If it is attached to u and y, then the subgraph of H ′′ induced by
every vertex but w is W (p, 1, 1) which is forbidden (Theorem 5.13). If the
ear is attached to v and y, then the subgraph of H ′′ induced by every vertex
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but x is cuff (Cp+1, C3, 0) which is forbidden (Theorem 5.23).
Suppose that H ′′ is H ′ with a further vertex z joined to between 2 and 5

of the vertices of H ′. Suppose that z is joined to 2 vertices of H ′. If neither
of these is y, then H ′′ is K4 with 2 disjoint ears each of length 2 which is
forbidden (Theorem 5.5). If z is joined to 2 vertices including y, then there
are 2 possibilities for the other vertex: u and v. If z is joined to u and y,
then the subgraph of H ′′ induced by every vertex but w is W (2, 1, 1) which
is forbidden (Theorem 5.13). If z is joined to v and y, then the subgraph of
H ′′ induced by every vertex but u is C3 with 2 ears on adjacent edges which
is forbidden (Theorem 6.1).

Suppose that z is joined to 3 vertices of H ′. If none of these vertices is y,
then the subgraph of H ′′ induced by every vertex but y is K5 minus an edge
which is forbidden (Theorem 5.7). If z is joined to y and 2 other vertices,
then there are three possible choices for this pair: u and w; v and x; and
u and v. If z is joined to u, w and y, then the subgraph of H ′′ induced by
every vertex but w is W (2, 1, 1) which is forbidden (Theorem 5.13). If z is
joined to v, x and y, then H ′′ is 2 K4’s intersecting in a K2 which is forbidden
(Theorem 5.6). If z is joined to u, v and y, then the subgraph of H ′′ induced
by every vertex but w is W (1, 1, 1, 1) which is forbidden (Theorem 5.14).

Suppose that z is joined to 4 vertices of H ′. If z is joined to every vertex
except y, then H ′′ is K5 with an ear of length 2 which is forbidden (The-
orem 5.3). If z is joined to every vertex except u, then the subgraph of
H ′′ induced by every vertex but y is K5 minus an edge which is forbidden
(Theorem 5.7). If z is joined to every vertex except v, then the subgraph
of H ′′ induced by every vertex but x is W (2, 1, 1) which is forbidden (The-
orem 5.13).

Finally suppose that z is joined to all 5 vertices of H ′. Then the sub-
graph of H ′′ induced by every vertex but u is K5 minus an edge which is
forbidden (Theorem 5.7).

Subcase 1b: H ′ = K5.

We prove by that the only graphs G which have Hall number not greater
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than 2 and have Km, m ≥ 5, as an induced subgraph are cliques. Let Km,
m ≥ 5, be a largest clique in G. If G 6= Km, then by Lemma 8 we can
find another induced subgraph of G, H ′′, that is either Km with an ear of
length at least 2 or Km with a further vertex joined to q vertices of Km,
q ≥ 3. In the first case either K4 with an ear of length at least 3 or K5

with an ear of length 2 is an induced subgraph of H ′′; both are forbidden
(Theorems 5.3 and 5.4). In the second case if q < m, then K5 minus an edge
is an induced subgraph of H ′′ which is forbidden (Theorem 5.7). If q = m,
then H ′′ = Km+1, contrary to the assumption that Km is a largest clique in
G.

Case 2: H = θ(3, 3, 2).

If G = θ(3, 3, 2), then h(G) = 2. We shall show that if θ(3, 3, 2) is an
induced subgraph of G but G 6= θ(3, 3, 2), then h(G) > 2. By Lemma 8
we can find an induced subgraph H ′ that is either θ(3, 3, 2) with an ear of
length p, p ≥ 3, or θ(3, 3, 2) plus a further vertex joined to 2 or more vertices
of θ(3, 3, 2). We label the vertices of θ(3, 3, 2) as shown below.
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Suppose that H ′ is θ(3, 3, 2) with an ear of length p, p ≥ 3. If this ear
is not joined to v, then the subgraph of H ′ induced by every vertex but v

is θ(p, 6 − r, r), 1 ≤ r ≤ 3, which is forbidden (Theorem 5.1). If the ear is
joined to v, then there are 2 possibilities for the other vertex of attachment:
u and x1. If the ear is attached to u and v, then the subgraph of H ′ induced
by every vertex but y1 and y2 is θ(p, 4, 1) which is forbidden (Theorem 5.1).
If the ear is attached to v and x1, then the subgraph of H ′ induced by every
vertex but x2 is θ(p + 1, 4, 1) which is forbidden (Theorem 5.1).
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Suppose that there is a vertex z joined to between 2 and 7 of the vertices
of θ(3, 3, 2). If z is joined to 2 vertices, then there are 8 ways to choose this
pair: u and v; u and w; u and x1; u and x2; v and x1; x1 and x2; x1 and
y1; and x1 and y2. In four of these cases H ′ is G2, G3, G4 or G5 which
are all forbidden (Theorems 5.19-5.22). We consider the other cases. If z is
joined to u and w, then H ′ is θ(3, 3, 2, 2) which is forbidden (Theorem 5.2).
If z is joined to u and x1, then the subgraph of H ′ induced by every vertex
but x2 is Cuff (C5, C3, 0) which is forbidden (Theorem 5.23). If z is joined
to v and x1, then the subgraph of H ′ induced by every vertex but x2 is
θ(4, 3, 1) which is forbidden (Theorem 5.1). If z is joined to x1 and y1, then
the subgraph of H ′ induced by every vertex but x2 is θ(4, 3, 1) which is
forbidden (Theorem 5.1).

If z is joined to 3 or more vertices other than v, then the subgraph of H ′

induced by every vertex but v is a partial wheel graph with 3 or more radial
edges and is not K4 so it is forbidden (Theorem 7). The only remaining
case is when z is joined to 3 vertices including v. The other two vertices
must be xi and yj : if z is not joined to either y1 or y2, then the subgraph of
H ′ induced by every vertex but y1 and y2 is W (a1, a2, a3) (which is not K4

since a1 + a2 + a3 = 5) which is forbidden (Theorem 7); a similar argument
holds if z is not joined to either x1 or x2. There are two possibilities: i = j

and i 6= j. If z is joined to v, x1 and y1, then the subgraph of H ′ induced by
every vertex but x2 is WL(2, 1, 1; 1, 3, 1) which is forbidden (Theorem 5.17).
If z is joined to v, x1 and y2, then the subgraph of H ′ induced by every
vertex but x2 and y1 is θ(3, 3, 1) which is forbidden (Theorem 5.1).

Case 3: H = θ(m, 2, 2), m ≥ 2.

If G = θ(m, 2, 2), then h(G) = 2. We shall show that if θ(m, 2, 2) is an
induced subgraph of G but G 6= θ(m, 2, 2), then h(G) > 2. By Lemma 8,
we can find an induced subgraph H ′ that is either θ(m, 2, 2) with an ear
of length p, p ≥ 2, or θ(m, 2, 2) with a further vertex joined to 3 or more
vertices of θ(m, 2, 2). Let the vertices of θ(m, 2, 2) be labelled as shown
below.
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Suppose that H ′ is θ(m, 2, 2) with an ear of length p, p ≥ 2. There are
six ways to choose a pair of vertices to which to attach the ear: u and v; u

and w; v and x; u and yi; v and yi; and yi and yj , i < j.
If the ear is attached to u and v, then the subgraph of H ′ induced

by every vertex but x is θ(m + 1, p, 1) which is forbidden unless p = 2
(Theorem 5.1). If p = 2, then H ′ is C4 with a triangle based on one edge and
an ear attached to non-adjacent vertices which is forbidden (Theorem 6.2).

If the ear is attached to u and w, then the subgraph of H ′ induced
by every vertex but x is θ(m, p, 2) which is forbidden unless {m, p} ∈
{{2}, {2, 3}, {3}} (Theorem 5.1). If m = 2 (or p = 2), then H ′ is θ(p, 2, 2, 2)
(or θ(m, 2, 2, 2)), which is forbidden (Theorem 5.2). If m = p = 3, then H ′

is θ(3, 3, 2, 2) which is forbidden (Theorem 5.2).
If the ear is attached to v and x, then H ′ is WL(m, 1, 1; 1, p, 1) which is

forbidden (Theorem 5.17).
If the ear is attached to u and yi, then unless i = m − 1 the subgraph

of H ′ induced by every vertex but yj , for all j > i, is cuff (Cp+i, C4, 0)
which is forbidden (Theorem 5.23). If i = m − 1, then the subgraph of H ′

induced by every vertex but x is θ(p,m − 1, 3) which is forbidden unless
{p,m− 1} ∈ {{1, 2}, {2}, {2, 3}} (Theorem 5.1). If {p,m− 1} = {1, 2}, then
H ′ is C4 with a triangle based on one edge and an ear attached to non-
adjacent vertices, which is forbidden (Theorem 6.2). If p = m− 1 = 2, then
H ′ is G6 which is forbidden (Theorem 6.3). If {p,m− 1} = {2, 3}, then H ′

is G2 which is forbidden (Theorem 5.19).
If the ear is attached to v and yi, then unless i = m − 1 the subgraph

of H ′ induced by every vertex but yj , for all j > i, is θ(p + i, 3, 1) which is
forbidden (Theorem 5.1). If i = m − 1, then unless i = 1 the subgraph of
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H ′ induced by every vertex but yj , for all j < i, is θ(p + 1, 3, 1) which is
forbidden (Theorem 5.1). If i = m − 1 = 1, then H ′ is WL(p, 1, 1; 1, 2, 1)
which is forbidden (Theorem 5.17).

If the ear is attached to yi and yj , then the subgraph of H ′ induced by
every vertex but x is θ(p, j − i,m + 2 + i − j) which is forbidden unless
p = 2 and j − i ∈ {1, 2} (since m + 2 + i − j ≥ 4) (Theorem 5.1). Unless
i = 1, the subgraph of H ′ formed by every vertex but yk, for all k < i,
is cuff (C4, Cp+j−i,m − j), and unless j = m − 1, the subgraph formed by
every vertex but yk, for all k > j, is cuff (C4, Cp+j−i, i); both are forbidden
(Theorem 5.23). So the only remaining cases are p = 2, i = 1, j = m−1 and
j− i ∈ {1, 2}. In these cases H ′ is either G7 or G8 which are both forbidden
(Theorems 6.4 and 6.5)

Suppose that H ′ is θ(m, 2, 2) with another vertex z joined to 3 or more
vertices of θ(m, 2, 2). If z is joined to three or more vertices of θ(m, 2, 2)
other than x (or equivalently v), then the subgraph of H ′ induced by every
vertex but x (or v) is a partial wheel graph with 3 or more radial edges and
is not K4 so is forbidden (Theorem 7). The only remaining case is when
z is joined to v, x and one other vertex. There are 2 possibilities for the
other vertex: u and yi. If z is joined to u, v and x, then the subgraph of
H ′ induced by every vertex but yi, for all i, is W (2, 1, 1) which is forbidden
(Theorem 5.13). If z is joined to v, x and yi, then the subgraph induced
by every vertex but x is θ(2, i + 1,m + 1 − i) which is forbidden unless
{i + 1,m + 1− i} ∈ {{2}, {2, 3}, {3}}. If i + 1 = m + 1− i = 3, then, as in
Case 2, H ′ − y1 = WL(2, 1, 1; 1, 3, 1), which is forbidden (Theorem 5.17). If
{i + 1,m + 1− i} = {2, 3}, then we can assume that i = 1 (and m = 3) and
so the subgraph of H ′ induced by every vertex but y2 is WL(2, 1, 1; 1, 2, 1)
which is forbidden (Theorem 5.17). If i + 1 = m + 1− i = 2, then H ′ is G9

which is forbidden (Theorem 6.6).

Case 4: H = θ(m, 2, 1), m ≥ 2.

If G = θ(m, 2, 1), then h(G) = 2. We shall show that if θ(m, 2, 1) is an
induced subgraph of G but G 6= θ(m, 2, 1), then h(G) > 2 or G is either a

19



cycle of even length with two triangles based on non-adjacent edges or K4

with an ear of length 2. By Lemma 8, we can find an induced subgraph of G,
H ′, that is either θ(m, 2, 1) with an ear of length p, p ≥ 2, or θ(m, 2, 1) with
a further vertex joined to 3 or more vertices of θ(m, 2, 1). Let the vertices
of θ(m, 2, 1) be labelled as shown below.
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Suppose that H ′ is θ(m, 2, 1) with an ear of length p, p ≥ 2. There are
five ways to choose a pair of vertices to which to attach the ear: u and v; u

and w; u and yi; v and yi; yi and yj , i < j.
If the ear is attached to u and v, then H ′ is C3 with 2 ears on adjacent

edges which is forbidden (Theorem 6.1).
If the ear is attached to u and w, then the subgraph of H ′ induced by

every vertex but v is θ(p, m, 1) which is forbidden if p ≥ 3 and m ≥ 3. If
p = 2 (or m = 2), then H ′ is θ(m, 2, 2, 1) (or θ(p, 2, 2, 1)), which is forbidden
(Theorem 5.2).

If the ear is attached to u and yi, then unless i = m− 1 the subgraph of
H ′ induced by every vertex but yj , for all j > i, is cuff (Cp+i, C3, 0) which is
forbidden unless p + i = 3 (Theorem 5.23). If p + i = 3, then H ′ is a cycle
with 2 triangles based on adjacent edges which is forbidden (Theorem 5.8).
If i = m−1, then the subgraph of H ′ induced by every vertex but v is θ(m−
1, p, 2) which is forbidden unless {m−1, p} ∈ {{1, 2}, {1, 3}, {2}, {2, 3}, {3}}
(Theorem 5.1). If m − 1 = p = 3, then H ′ is G5, which is forbidden
(Theorem 5.22). If {m− 1, p} ∈ {{2}, {2, 3}}, then H ′ is a forbidden graph
of the type described in Theorem 6.2. If m − 1 = 1, then H ′ is C3 with 2
ears on adjacent edges which is forbidden (Theorem 6.1).

If the ear is attached to v and yi, then H ′ is WL(p, i, m− i; 1, 1, 1) which
is forbidden (Theorem 5.15).
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If the ear is attached to yi and yj and p = 2 and j − i = 1, then
H ′ is a cycle with 2 triangles on non-adjacent edges. If the cycle is of
odd length, then H ′ is forbidden (Theorem 5.10); if the cycle is of even
length, then h(H ′) = 2 but we shall show below in Subcase 4a that either
G = H ′ or h(G) > 2. If p 6= 2 or j − i 6= 1, then p + j − i ≥ 4. Unless
j = m − 1 the subgraph of H ′ induced by every vertex but yk, for all
k > j, is cuff (Cp+j−i, C3, i), and unless i = 1 the subgraph of H ′ induced
by every vertex but yk, for all k < i, is cuff (Cp+j−i, C3,m − j); both are
forbidden (Theorem 5.23). If i = m − j = 1, then the subgraph induced
by every vertex but v is θ(3, p, j − i) which is forbidden unless {p, j − i} ∈
{{2}, {2, 3}} (Theorem 5.1). If p = j − i = 2, then H ′ is G7 which is
forbidden (Theorem 6.4). If {p, j − i} = {2, 3}, then H ′ is θ(3, 3, 2) with an
ear which is forbidden (Case 2).

Suppose that H ′ is θ(m, 2, 1) with another vertex z joined to 3 or more
vertices of θ(m, 2, 1). If z is joined to 3 vertices other than v, then the
subgraph of H ′ induced by every vertex but v is a partial wheel graph with
3 or more radial edges and is forbidden unless it is K4 (Theorem 7). If it is
K4, then H ′ is K5 minus an edge, which is forbidden (Theorem 5.7), or H ′

is K4 with an ear of length 2 and either G = H ′ or h(G) > 2 (Subcase 1a).
The only remaining case is when z is joined to v and 2 other vertices. There
are 3 possible choices for this pair: u and w; u and yi; and yi and yj , i < j.

If z is joined to u, v and w, then H ′ is K4 with an ear of length m. If
m > 2, then H ′ is forbidden (Theorem 5.4), else we refer again to Subcase
1a.

If z is joined to u, v and yi, then unless i = m − 1 the subgraph of H ′

induced by every vertex but yk, for all k > i, is C3 with 2 ears on adjacent
edges which is forbidden (Theorem 6.1), and unless i = 1 the subgraph of
H ′ induced by every vertex but yk, for all k < i, is also C3 with 2 ears on
adjacent edges. The remaining case is when i = m − 1 = 1. In this case
H ′ = W (1, 1, 1, 1) which is forbidden (Theorem 5.14).

If z is joined to v, yi and yj , then unless i = j − 1 the subgraph of H ′

induced by every vertex but yk, for all k, i < k < j, is W (1 + i,m + 1− j, 1)
which is forbidden (Theorem 5.13). Suppose that i = j − 1. If either i = 1
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or m− j = 1, or i and m− j are both odd, then H ′ = G1 which is forbidden
(Theorem 5.12). If i 6= 1 and m − j 6= 1 and i is even (or m − j is even),
then the subgraph of H ′ induced by every vertex but yk, for all k > j, is a
cycle of odd length with 2 triangles on non-adjacent edges which is forbidden
(Theorem 5.10).

Subcase 4a: H ′ is a cycle of even length with 2 triangles on non-adjacent
edges.

If G = H ′, then h(G) = 2. We shall show that if H ′ is an induced sub-
graph of G but G 6= H ′, then h(G) > 2. By Lemma 8, we can find an
induced subgraph H ′′ that is either H ′ with an ear of length p, p ≥ 2, or H ′

with a further vertex joined to 3 or more vertices of H ′. Let the vertices be
labelled as shown below.
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Let the lengths of the paths between v1 and v2 and between w1 and w2 be
p1 and p2. Note that p1 and p2 have the same parity.

Suppose that H ′′ is H ′ with an ear. If the ear is not attached to both
u1 and u2, then the subgraph, J , of H ′′ induced by every vertex but u1 (or
u2) will be a graph considered in Case 4, and so it will be forbidden unless
J = H ′ in which case H ′′ is either a cycle of even length with 3 triangles
on non adjacent edges or it has an induced subgraph that is a cycle with
2 triangles on adjacent edges or on the same edge; all these graphs are
forbidden (Theorems 5.8, 5.9 and 5.11). If the ear is attached to both u1

and u2, then if p has the same parity as p1 and p2, H ′′ = G1 which is
forbidden (Theorem 5.12); otherwise the subgraph induced by every vertex
but the internal vertices of the path between v1 and v2 is an odd cycle with
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2 triangles on non-adjacent edges which is forbidden (Theorem 5.10).
If H ′′ is H ′ with a further vertex joined to 3 or more vertices of H ′, then

let J and J ′ be the subgraphs of H ′′ induced by every vertex but u1 and u2

respectively. It is easy to see that either J or J ′ is a graph that was shown
to be forbidden in Case 4.

4 Graphs with more than one block in their core

In this section we complete the proof of Theorem 2 by proving that a graph
with at least two blocks in its core has Hall number 2 if and only if every
block is either a clique, θ(2, 2, 1) or K4 with an ear of length 2; at least one
block is not a clique; and if a block is θ(2, 2, 1) or K4 with an ear, then only
the vertices of degree 2 can be cutvertices in the core of the graph.

First we prove that there is no other graph with at least 2 blocks in its
core G with Hall number 2. Each induced subgraph of G, and therefore each
block of G, must be a graph with Hall number at most 2. Suppose that a
block of G contains an induced cycle C of length m1, m1 ≥ 4. Let P be the
shortest path that joins C to an induced cycle in another block. Let the other
cycle be D and have length m2, let P = v1v2 · · · vr−1vr where v1 ∈ V (C),
vr ∈ V (D). Let H be the subgraph induced by V (C) ∪ V (P ) ∪ V (D). For
3 ≤ i ≤ r− 2, vi is not adjacent to a vertex in either V (C) or V (D) else we
can find a shorter path than P . Also vr−1 is adjacent to only one vertex, vr,
in V (D) since if it is also adjacent to a vertex w ∈ V (D), then instead of D

we can consider the cycle induced by vr−1 and the vertices on D between vr

and w inclusive and again obtain a shorter path than P . If v2 is adjacent
only to v1 in V (C), then H is Cuff (Cm1 , Cm2 , l), m1 ≥ 4, m2 ≥ 3, l ≥ 0,
which is forbidden (Theorem 5.23). Suppose that v2 is adjacent to more
than one vertex in V (C). Then we can find a cycle of length m′

1 that is
induced by v2 and some of the vertices on C. So if m2 > 3, then we can
find an induced Cuff (Cm2 , Cm′

1
, l), m2 ≥ 4, m′

1 ≥ 3, l ≥ 0. Hence we shall
assume that D = K3. If v2 is adjacent to 2 vertices, u and v1, in V (C)
and they are adjacent, then H is Cuff (θ(m1 − 1, 2, 1),K3, l), m1 − 1 ≥ 3,
l ≥ 0, where the point of attachment of the joining path to θ(m1 − 1, 2, 1)
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is the vertex of degree 2 that is adjacent to the 2 vertices of degree 3, which
is forbidden (Theorems 5.25); if u and v1 are not adjacent, then the graph
induced by the vertices on C between u and v1 inclusive and V (P ) and
V (D) is Cuff (Cm′

1
, Cm2 , l), m′

1 ≥ 4, m2 ≥ 3, l ≥ 0. If v2 is adjacent to
{v1, u1, . . . , us} ⊆ V (D), s ≥ 2, then we can assume that v1u1 . . . us is a
path (else again we can find an induced Cuff (Cm′

1
, Cm2 , l), m′

1 ≥ 4, m2 ≥ 3,
l ≥ 0). Therefore the graph induced by v1, u1, u2, V (P ) and V (D) is
Cuff (θ(2, 2, 1), K3, l), l ≥ 0, where the point of attachment of the path of
the joining path to θ(2, 2, 1) is one of the vertices of degree 3, which is
forbidden (Theorem 5.24). We have shown that if a block of G contains
an induced cycle of length greater than 3, then G has Hall number greater
than 2. By Theorem 1 and Section 3, each block must be a clique, θ(2, 2, 1)
or K4 with an ear of length 2; these are the only 2-connected graphs with
Hall number at most 2 and no induced cycle of length greater than 3. If
θ(2, 2, 1) or K4 with an ear of length 2 is a block, then only the vertices of
degree 2 can be cutvertices in G else Cuff (θ(2, 2, 1),K3, l), l ≥ 0, where the
point of attachment of the joining path to θ(2, 2, 1) is one of the vertices of
degree 3, or Cuff (K4 with an ear of length 2, K3, l), l ≥ 0, where the point
of attachment of the joining path to K4 with an ear is one of the vertices of
degree 3, is an induced subgraph; both are forbidden (Theorems 5.24 and
5.26). Finally, we insist that at least one block is not a clique else h(G) = 1
(Theorem 1).

We shall call every vertex that cannot be a cutvertex in the core a non-
attachment vertex; the other vertices are attachment vertices.

To prove that the cores listed at the start of the section have Hall number
2 we shall prove a slightly stronger result.

Theorem 9 Let G be the core of a graph. Let G have at least two blocks
where every block is either a clique, θ(2, 2, 1) or K4 with an ear of length 2,
and if a block is θ(2, 2, 1) or K4 with an ear, then the vertices not of degree
2 are not cutvertices. Let L be a list assignment for G such that |L(v)| ≥ 1
for each attachment vertex v, |L(v)| ≥ 2 for each non-attachment vertex v,
and G and L satisfy Hall’s condition. Then G has a proper L-colouring.
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Proof: First we shall show that we can give any block B of G a proper L-
colouring. If B is a clique, then this follows from Theorem 1. Suppose that
B is θ(2, 2, 1) or K4 with an ear of length 2. If |L(v)| ≥ 2 for each vertex
v, then there is a proper L-colouring since both graphs have Hall number
2. Suppose that for some vertex v, which must be a vertex of degree 2,
|L(v)| = 1, that is, say, L(v) = {1}. We shall show that if G has no proper
L-colouring, then B and L do not satisfy Hall’s condition. Let x and y

be the vertices of B adjacent to v. As B \ {v} is a clique it has a proper
L-colouring. Furthermore, in every proper L-colouring of B \ {v}, 1 must
be used to colour either x or y else we can obtain a colouring for B by using
1 on v. Define a list assignment L′ for B \ {v} as follows

L′(u) =

{
L(u) if u /∈ {x, y}
L(u) \ {1} if u ∈ {x, y}.

Thus B\{v} has no proper L′-colouring and so B\{v} and L′ cannot satisfy
Hall’s condition: there is a subgraph H ′ of B \ {v} such that

|V (H ′)| >
∑

σ

α(σ, L′,H ′)

and for all u ∈ V (H ′) \ {x, y}, 1 /∈ L′(u) else |V (H ′)| >
∑

σ α(σ, L,H ′); a
contradiction. Therefore H = H ′∪{v} and L do not satisfy Hall’s condition
since |V (H)| = |V (H ′)|+ 1 and

∑
σ α(σ, L,H) =

∑
σ α(σ,L′,H ′) + 1.

We shall show that if G1 and G2 are graphs that each satisfy the condi-
tions of the theorem, then so is G′, the graph formed if G1 and G2 intersect
in a single vertex x that is an attachment vertex in each of G1 and G2. Thus
by induction the theorem will be proved.

Let L be a list assignment such that |L(v)| ≥ 1 for each attachment
vertex v of G′ and |L(v)| ≥ 2 for each non-attachment vertex v of G′. We
shall show that if G′ cannot be coloured, then G′ and L do not satisfy
Hall’s condition. Let L(x) = {1, . . . , t}. If either G1 or G2 has no proper
L-colouring, then G and L do not satisfy Hall’s condition. Otherwise let
{1, . . . , k} be the colours that are not used on x in any proper L-colouring
of G1; so k < t as G1 can be coloured. If at least one colour in the set
{k +1, . . . , t} is used on x in a proper L-colouring of G2, then we can colour

25



G′. Assume that there is no such colouring of G2. We define two new list
assignments, L1 and L2, for G1 and G2 respectively, as follows

L1(u) =

{
L(u) if u 6= x

{1, . . . , k} if u = x,

L2(u) =

{
L(u) if u 6= x

{k + 1, . . . , t} if u = x.

As G1 does not have a proper L1-colouring, G1 and L1 do not satisfy Hall’s
condition so there must exist an induced subgraph, H1, of G1 such that

|V (H1)| − 1 ≥
∑

σ

α(σ, L1,H1). (2)

Note that x ∈ V (H1) else we would have |V (H1)| − 1 ≥ ∑
σ α(σ, L,H1) and

then G1 could not be coloured with L.
Similarly, as G2 does not have a proper L2-colouring there must exist an

induced subgraph, H2, of G2 such that x ∈ V (H2) and

|V (H2)| − 1 ≥
∑

σ

α(σ, L2,H2). (3)

Let H = H1 ∪H2. Clearly H is an induced subgraph of G. For each colour
σ, it is easy to see that α(σ,L, H) ≤ α(σ, L1,H1) + α(σ, L2,H2). Therefore

∑
σ

α(σ, L,H) ≤
∑

σ

α(σ,L1,H1) +
∑

σ

α(σ,L2,H2),

and so by (2) and (3)
∑

σ

α(σ, L,H) ≤ |V (H1)|+ |V (H2)| − 2

= |V (H)| − 1.

Therefore Hall’s condition is not satisfied by G and L. 2
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