Upper bounds and algorithms for parallel knock-out
numbers

HaJO BROERSMA !
MATTHEW JOHNSON!

DANIEL PAULUSMA 1
1 Departmoent of Computer Science
Durham University
South Road, Durham, DHI1 3LE, U.K.

{hajo.broersma,matthew.johnson2,daniel.paulusma}@durham.ac.uk

December 13, 2007

Abstract

We study parallel knock-out schemes for graphs. These schemes
proceed in rounds in each of which each surviving vertex simultane-
ously eliminates one of its surviving neighbours; a graph is reducible
if such a scheme can eliminate every vertex in the graph. We resolve
the square-root conjecture, first posed at MEFCS 2004, by showing that
for a reducible graph G, the minimum number of required rounds is
O(y/n); in fact, our result is stronger than the conjecturce as we show
that the minimum number of required rounds is O(y/a), where « is
the independence number of G. This upper bound is tight. We also
show that for reducible K ,-free graphs at most p — 1 rounds are re-
quired. It is already known that the problem of whether a given graph
is reducible is NP-complete. For claw-free graphs, however, we show
that this problem can be solved in polynomial time. We also pinpoint
a relationship with (locally bijective) graph homomorphisms.
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1 Introduction

In this paper, we continue the study on parallel knock-out schemes for finite
undirected simple graphs introduced in [?] and studied further in [?7, 2,
?]. Such a scheme proceeds in rounds: in the first round cach vertex in
the graph sclects exactly one of its neighbours, and then all the sclected
vertices are eliminated simultaneously. In subsequent rounds this procedure
is repeated in the subgraph induced by those vertices not yet eliminated.
The scheme continues until there are no vertices left, or until an isolated
vertex is obtained (since an isolated vertex can never be climinated).

A graph is KO-reducible if there exists a parallel knock-out scheme that
climinates the whole graph. The parallel knock-out number of a graph G,
denoted by pko(G), is the minimum number of rounds in a parallel knock-
out scheme that climinates every vertex of G If G is not KO-reducible, then
pko(G) = oc.

Our main motivation for studying knock-out schemes is the intimate
relationship between this concept and well-studied structural graph theo-
retical concepts such as perfect matchings, hamiltonian cycles and 2-factors
(they all yield knock-out schemes of one round). Apart from these structural
properties, we are also interested in complexity aspects. Whereas the clas-
sical complexity problems related to matchings and hamiltonian cycles have
been settled many years ago, the analogous problems related to knock-out
schemes have only been resolved recently, and only for general graphs and
graphs of bounded tree-width. For many interesting classes, however, these
problems on knock-out schemes remain open [?].

Knock-out schemes also have a clear relationship with games on graphs,
a topic which has rececived considerable attention in recent decades [?7]. But
unlike many games on graphs, knock-out schemes may be motivated by
practical settings, e.g., in which objects exchange entities that deactivate
the receiving objects, like viruses that paralyse or block computers, or com-
putational tasks that prevent processors or sensors from working on other
tasks.

1.1 Our results

In [?], a number of results, conjectures and questions on upper bounds for
knock-out numbers were presented. For trees, it was shown that the knock-
out number of a tree on n vertices was O(log n) and a family of trees that met
this bound was exhibited. Also presented was a family of bipartite graphs
whose knock-out numbers grow proportionally to the square root of the



number of vertices, and it was conjectured that for any KO-reducible graph
on n vertices the parallel knock-out number is at most 24/n. In this paper,
in Scction 77, we prove this conjecture by showing that a KO-reducible
n-vertex graph G has
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pko(G) < min 5 +

where a denotes the independence number of G.

In [?], a polynomial algorithm was also given that would determine the
parallel knock-out number of any tree. In [?] it was shown that the problem
of finding parallel knock-out numbers is, for general graphs, NP-complete.
In this paper, in Section 7?7, we present a polynomial algorithm that finds the
knock-out number of claw-free graphs, that is, graphs that do not contain an
induced K7 3; these form a well-studied class of graphs, see [?] for a survey.
We also give a tight bound on the knock-out number of KO-reducible Ky -
free graphs, genceralising a result of [?] on claw-free graphs.

In Section 77, we give an upper bound on the parallel knock-out number
of one graph in terms of the parallel knock-out number of another graph: we
show that if a graph G allows a so-called locally bijective homomorphism
to a smaller graph H then pko(G) < pko(H). Locally bijective homo-
morphisms are also called graph coverings. They are well-studied and have
many applications [?, ?7].

2 Preliminaries

Graphs in this paper are denoted by G = (V, E). An edge joining vertices u
and v is denoted by we. If not stated otherwise a graph is assumed to be
undircected and simple. If a graph G is directed then an arc from a vertex u
to a vertex v is denoted by (u, v). For graph terminology not defined below,
we refer to [?].

For a vertex w € V' we denote its neighbourhood, that is, the sct of
adjacent vertices, by N(u) = {v|uv € E}. The degree of a vertex is the
number of edges incident with it, or, equivalently, the cardinality of its
neighbourhood. A subset U C V is called an independent set of G if no two
vertices in U arc adjacent to cach other. The independence number o of a
graph G is the number of vertices in a maximum independent set of G.

A complete bipartite graph K x| |y is a bipartite graph with the maxi-
mum number of edges between its bipartite classes X and Y. If [ X]| = 1,
then it is a star and the vertex in X is the centre vertex and the vertices



in Y arc leaves. If | X| = |Y| =1 we arbitrarily choose one of the star’s two
vertices to be the centre vertex. A graph G that does not contain a K,
as an induced subgraph for some p > 1 is said to be K ,-free. A K s3-free
graph is also called claw-free.

Now we give a more formal definition of knock-out schemes. First, for a
graph G = (V, E) and sct of vertices W C V., a KO-selection is a function
f W — W with f(v) € N(w) for all v € W. If f(v) = u, we say that
vertex v fires af vertex u, or that vertex u is knocked out by vertex v. We
also say that u is a victim of v, and that v is an assassin of u. For cach
u € W, we denote the set of assassing of u by A(u); that is, v € A(w) if and
only if f(v) = u. If A(u) contains a single vertex v (that is, v is the only
vertex that fires at u), then we call u the unique vietim of v. If A(u) = (), we
say that w is a survivor of f and the set of all survivors of f is denoted B(f).
For a subset U € W we use the shorthand notation A(U) = [ J,,c,; A(u), and
we say that U is knocked out by a subsct Z C W if A(U) C Z, that is, if
every vertex in U is knocked out by a vertex in 7.

For G = (V, E), a KO-reduction scheme S is a finite scquence of rg
KO-sclections fy, ... frg where the domain of fy is V' and the domain of f;,
2 < i <rgis B(fie1) and B(fr.) = 0. Each sclection in the sequence is
called a round, or a firing, of the KO-reduction scheme and so rg denotes
the number of rounds in the scheme (we omit the subseript when there is no
ambiguity). Thus a KO-reduction scheme for a graph is a sequence of firings
such that every vertex fires in the first round and in cach subsequent round
every surviving vertex fires. At the end of the scheme no vertex survives;
they have all been knocked out.

If a KO-reduction scheme exists for G, then G is called KO-reducible.
The parallel knock-out number of G, pko(G), is cither the smallest number r
for which such a sequence with r rounds exists or, if no such sequence exists,
pko(G) = oo. For a KO-reduction scheme S we denote the set of vertices
that are victims of a vertex v (over all rounds) by L(v). For a subset Z C V,
we use the shorthand notation L(Z) = |, L(v).

Note that if S is a KO-reduction scheme for G, then it may be possible
to obtain further schemes by making small changes to some of the KO-
sclections. For example, if in some round 4, the victim u of a vertex v is
not unique, and » has another neighbour w that does not survive round ¢,
then it makes no difference if o fires at w instead of u. So we can obtain
another valid KO-reduction scheme by letting f;(v) = w (instead of having
fi(v) = w). In such a case, we might say informally that we are adjusting
the firing.

An in-tree is a directed tree that contains a root u that can be reached
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Figure 1: A component of a graph Gj.
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from any other vertex by a directed path. Note that a graph containing only
one vertex is an in-tree.

Given a KO-reduction scheme, we denote the subset of vertices knocked
outinround ¢,7=1,....r, by R;. Let Gy be the directed graph with vertex
sct R; and an arc from a vertex u to a vertex v if and only if fi(u) = v. We
may also use G; to denote the underlying undirected graph; it will always
he clear which from the context.

Let us make some simple observations about G;. Let 7 > 1 and let u
be a vertex in G;. By definition of G5, v is knocked out in round ¢. It
may happen that u is knocked out by vertices that survive round #; that
is, A(u) N R; = 0. Then u has in-degree zero in Gy, On the other hand,
A(u) N R; may contain onc or more vertices in Gy that fire at u. The vertex
u itself fires at exactly one vertex in round 7. By definition of Gy, the victim
of u is in G;. Hence, u has out-degree exactly one in ;. We conclude that
cvery component of G is a directed graph with out-degree equal to one. It
is casy to sce that this implics the following; sce Fig. 7?7 for an illustration.

Observation 1 Let S be a KO-reduction scheme for a graph G. For i =
1,...,7r, each component of G; is formed by a directed cycle D on at least
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two vertices, such that each vertexr on D is the root of some pendant in-tree.

Another observation we will use is the following.



Observation 2 If a graph G contains two distinct vertices of degree 1 that
share the same neighbour, then G is not KO-reducible.

Note that when referring to, for example, Gy, it is implicit that we know
with respect to which KO-reduction scheme this graph is defined. We wish
to avoid the cumbersome notation necessary to make it explicit. Sometimes
we will be considering pairs of schemes S and S and will write, for instance,
that Go has fewer vertices under S7 than under S. By this we mean that the
number of vertices of G that are knocked out in the sccond round when we
apply scheme S is less than the number of vertices of G that are knocked
out in the sccond round when we apply scheme S.

3 Resolving the square-root conjecture

Let S be a KO-reduction scheme for a KO-reducible graph G. In this section
we prove the square-root conjecture by constructing schemes that knock out
vertices “as early as possible”. Let us make this notion precise. Let

s

w(S) =il Ry,

i=1

and we say that S is a minimal KO-reduction scheme for G if w(S) is
minimum over all KO-reduction schemes for G.

For a minimal KO-reduction scheme S of a graph G, we can make a num-
ber of further assumptions. We use the following terminology. If G has a
component C that consists of two vertices v and v we call C' a two-component
of G;. Note that there must be ares (u, v) and (v, u) between the vertices u
and v of a two-component C. If G; has a component C' that consists of ver-
tices w, v1,..., v, for some p > 2 and arcs (u, vy), (v1, 1), (v2,u), ..., (vp, u)
then we call C a star-component of G; with centre vertez u. The vertices
v, ..., v arc called the leaves of C, and vy is called the centre-victim, and
the other leaves are called centre-free. Finally, if G; has a component that
is a dirccted cycle with an odd number of vertices then we call such a com-
ponent an odd cycle-component of G.

Lemma 3 If G is KO-reducible, then G admits a minimal KO-reduction
scheme S with the following properties:

(i) Each component C of Gy is either a two-component, a star-component
or an odd cycle-component.



(ii) For 2 <i <r —1, every component of G; is cither a two-component
or a star-component.

(iii) Every component of Gy is a two-component.

(iv) If C is an odd cycle-component (in Gy) then no vertices of Ro, ..., Ry
fire at vertices of C in round 1.

(v) For1<i<r—1, there is no edge in G between any two leaves of the
same star-component or of two different star-components in Gj.

Proof: Let G be a KO-reducible graph. Then G admits a KO-reduction
scheme S, Let € be a component in G5 for some 1 < 4 < r. We start
the proof by showing that if S is minimal, then we can agssume that C is
either a two-component, a star-component or an odd cycle-component. By
Obscrvation 7?7, C is formed by a directed cycle D on vertices uq, ..., up for
some p > 2, such that cach wu; is the root of some pendant in-tree 75,

Suppose p is even and p > 4. We adjust the firing by letting the vertices
of Vp fire at cach other according to a perfect matching of D. Hence, we
may assume that this case does not occur.

Suppose p > 3 is odd. If D contained a vertex that is knocked out by
some vertex v in its corresponding pendant in-tree, then we can adjust the
firing by letting the vertices of Vi U {w} fire at cach other according to a
perfect matching of this subgraph. Hence, we may assume that C = D is
an odd cycle-component.

Suppose that p = 2. Then the underlying undirected graph of C is a
tree, and it is obvious that it can be decomposed into two-components and
star-components (and that we can let these components define the firing).

By Observation 77, we have that G- cannot contain any star-components.
To complete the proof of (i) (iii), we must show that odd cycle-components
only occur in G1. To do this we shall first prove a claim which also imme-
diately implies (iv): for any odd cycle-component D we may assume that
A(D) = D:; that is, vertices in D are only knocked out by cach other. Sup-
pose D is an odd cycle-component on vertices wuy,...,u, in some G; for
i > 1, such that there exists a vertex v € A(D)\D and v fires at u;. We
adjust the firing by replacing the are (uy, u1) by (up, up—1) and return to a
previous case. Hence, we may assume that this case does not occur.

Now suppose that a graph G;, i > 2, contains an odd cycle-component
D. First supposc that in round 7 — 1 all vertices in D fire at vertices in R4
that cither arc centre vertices of star-components, or clse belong to two-
components or odd cycle-components. Since we just saw that no vertices



in Rip1 U...U R, firc at D, we can move D to G;—1 (since all victims
of D in R;_1 arc not unique, it does not matter if the vertices of D fire at
cach other instead). This way we obtain a KO-reduction scheme S7 with
w(S’) < w(S). This contradicts the minimality of S. In the remaining case,
there exists a vertex v in D that fires at a leaf w in a star-component in
R; 1. We let v and w fire at cach other in round i — 1, so we arc able to
move u to R; 1 as A(D) = D. We let the other vertices in D fire at cach
other in round 7 according to a perfect matching of D — w. This way we
again obtain a KO-reduction scheme S” with w(S’) < w(S), contradicting
the minimality of S.

To finish the claim we prove (v). Supposc v and v arc leaves in G for
some 1 <4 < r —1, such that v and v arc adjacent in G. In casc u and
v arc leaves of different star-components, we adjust the firing by letting u
and v firc at cach other, and, if necessary, changing the centre-victims to
be vertices other than v and v. Suppose w and v are leaves of the same
star-component C. Let z be the centre vertex of C. If € has a third leaf,
then we again let w and v fire at cach other and let another leaf be the
centre-victim.  Otherwise we can form an odd cycle-component and return
to a previous case. O

We call a minimal KO-reduction scheme S of a graph G that satisfies the
propertics (i)-(v) of Lemma 7?7 a simple KO-reduction scheme of G, We will
continue to find further propertics of simple KO-reduction schemes.

Observation 4 Let S be a simple KO-reduction scheme for a graph G. Let
u,v be, respectively. vertices of R; and R;. i < j. such that u is the unique
victim of v. Then u is a centre-free leaf of a star-component in G;.

Proof: By Lemma 77, u cannot be a vertex of an odd cycle-component.
If w is in a two-component, or u is the centre vertex or centre-vietim of a
star-component, then there are at least two vertices firing at u. Hence u
must be a centre-free leaf of a star-component. U

Lemma 5 Let S be a simple KO-reduction scheme for a graph G with r > 2.
Let C be a two-component in Gy. Then in rounds 1,...r — 1 all victims of
one of the two vertices of Gy are not unique, and all victims of the other
one are unique.

Proof: Fori=1,..., r — 1, let x; be the vietim of « in round ¢, and let y;
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be the vietim of » in round 4.



Suppose both z, 1 and y,_1 arc not unique victims. We show that this
means that it is possible to move «w and v to R, . If .y % y,_, or
Tr_1 = Yr_1 18 the victim of vertices other than w and v, then let v and v
fire at cach other in round r — 1. If 2,1 = y,_1 is fired at by only u and
v, then it is a centre-free vertex of a star-component and we can adjust the
firing to let u, v and z,_1 form an odd cycle-component in G;_1. Either way
we obtain a new KO-reduction scheme S” with w(S") < w(S), contradicting
the minimality of S. Hence we can assume that g, 1 is a unique victim.

We show that all victims of u arc not unique by contradiction. Let b be
the largest index such that xj, is unique. By Obscervation 77, vertices xj, and
yr_1 arc centre-free leaf vertices of star-components. Since centre vertices
arc not unique victims, we can let u and x, fire at cach other in round h,
and we can let v and y,_y fire at cach other in round r — 1. This way we
obtain a new KO-reduction scheme S” with w(S") < w(S). This contradicts
the minimality of S.

Now we again find a contradiction to show that all victims of v are
unique. Let A be the largest index such that y, is not a unique victim.
Then we let v fire at y; in round j — 1 for j = A+ 1,...,r — 1 (so we
move those vertices from R; to R;_1), and v does not fire at y;, anymore.
Since 2,1 is not a unique victim, we can then let w and v fire at cach other
in round r — 1. This way we obtain a new KO-reduction scheme S’ with
w(S’) < w(S). This contradicts the minimality of S and completes the proof
of the lemma. U

Lemma 6 Let S be a simple KO-reduction scheme for a graph G with r > 2.
For each i > 2. R; contains a vertex v; whose victims in round 1,...,1—1 are

all unique. Let up be the (unique) neighbour of ve in Gy. Then | J;_, L(v;) U

. : ) 2
{w,} is an independent set of cardinality % in G.

Proof: Since R, is non-cmpty, there exists a two-component C in G,.. Let
uy and v, be the two vertices of C. By Lemma 7?7, we may assume that
all victims of u, in rounds ¢ = 1,...,r — 1 arc not unique, and all victims
of v, arc unique. Denote the victims of v, in rounds ¢ = 1,...,7 — 1 by
Y-, Yr_q, respectively. By Observation 77, every gy is a centre-free leaf
vertex of a star-component C7. Fori =2,...,7—1, let v; be the centre vertex
of Cf and for h=1,...i—1, let y}L be the vietim of vy in round A. We claim
that these victims y! are all unique. For i = r, this is already shown. We
prove the rest of the statement by contradiction. Let 2 <4 <r — 1. Let b
be the largest index such that y’,il is not a unique victim of v;. We adjust the
firing as follows. Since y;']/ is not a unique victim of v;, we do not have to let



v; fire at it. Then we let v, fire at y;- inround j—1forj=h+1,...,i—1,
SO WC MOve y; to Rj_qfor j=h+1,...,i—1 Inroundi—1we let v; fire at
yr, so we move y! to ,_1. Then we do not have to let v, fire at yi. Hence,
we can let v, fire at y;-' inround j —1for j=4i+1,...,7r — 1, s0o we move y;-'
toround j— 1 for j =i+ 1,...,r — 1. Finally, we let u, and v, firc at cach
other in round r — 1. This is possible, because the victim of u,. in round
r — 1 is not unique, due to Lemma 77, This way we have obtained a new
KO-reduction scheme S with w(S") < w(S), contradicting the minimality
of S.
We will now prove that

r r

i—1
t- U - U U

=2 =2 h=1
is an independent set. We first note that

r i—1 roo1—1

) 2
L= U U =3 1=——

i=2 h=1 1=2 h=1

since all vertices in L are unique victims.

Because S is simple, by Lemma 77, there is no edge between any two
vertices y}7 and y‘ZL. Suppose there were an edge y;;y?]f, where h #£ j. If
h < j, then we move yj to Ry, cach yy, fork=j+1,...,r—1to Ry_,, and
finally u, and v, to R._;. We can adjust the firing and obtain a new KO-
reduction scheme S with w(S’) < w(S). This contradicts the minimality
of S. If h > j, then we move y;']/ to Ry, cach yp for k = 4,...,7 — 1 to
Ri_1, and finally u, and v, to R,_1. We adjust the firing and obtain the
same contradiction as before. Suppose there exists an edge between two
vertices y! and yf with b < j and r ¢ {i,7}. We move yf to Iy, each yj for
t=j,....,r—1to Ry, and finally u, and v, to R,_1. We adjust the firing
and obtain the same contradiction as before.

Now suppose u, is adjacent to a vertex y’;',/ of L. By Lemma 77, all
victims of u, arc not unique. Then we can let u, fire at y}L in round 7. Then
?/;;, is no longer a unique victim and we find a KO-reduction scheme S7 with
w(S") < w(8) as before. This final contradiction completes the proof. O

We are now ready to state our main theorem, which proves (and strengthens)
the square-root conjecture posed in [?].
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Theorem 7 Let G be a KO-reducible graph. Then

1 71 7
pko(G) <mind —= +1/2n— L, =4 /2a— LY.
pko(G) < nun{ 5 +1/2n 1 3 + 1/ 2¢ 4}

Proof: It is straightforward to check that the statement holds for a graph
G with pko(G) = 1. Let S be a simple KO-reduction scheme for a graph G
with 7 > pko(G) > 2. By Lemma ?7, we find an independent set L' of G
that has cardinality |L'| = 2(r? —r+2) < «. Note that [y contains a centre
vertex of a star-component. This, together with Lemmas 77 and 77, implics
that n > [L'|+7—1+1=(r? —r +2) +r. Solving both inequalitics gives
us the required upper bound. O

We note that the bound mentioned in Theorem 77 is asymptotically tight.
In [?], it has been proven that for all p > 1, pko(K,,) = p = O(v/n) =
©(y/«) for all complete bipartite graphs on n = p + ¢ vertices with ¢ =
P+ 1).

4 Claw-free graphs

It is known that claw-free graphs can be knocked out in at most two rounds [?]
if they are KO-reducible (not all claw-free graphs are, take for example an
isolated vertex or a path on three vertices). We generalise this result for
K p-free graphs for any p > 2. This solves a question in [?].

Theorem 8 Letp > 1. If a Ky ,-free graph G is KO-reducible then pko(G) <
p—1.

Proof: The case p = 1 is trivial. For p > 2, the statement follows dircctly
from Lemma ?7. OJ

This result is the best possible. In [?, Scction 4], a tree Yy is defined for
cach integer £ > 1, and it is shown that pko(Yy) = £. It is also casy to check
that Yy is K g1 1-free. We omitted the details.

In the rest of this scction, we suppose that G = (V, E) is a claw-free
graph and show that pko(G) can be determined in polynomial time. We
nced the following lemma.

Lemma 9 Let G be a connected claw-free graph with pko(G) = 2. Then
there is a simple KO-reduction scheme in which only two vertices u and v
survive to the second round.

11



Proof: By Lemma 77 and claw-freeness, we know there is a simple two-
round KO-reduction scheme S for G such that

(i) cach component of Gy is a two-component, star-component or odd
cycle,

(ii) cach component of Gy is a two-component,

(iii) in the first round the vertices of G do not fire at vertices that belong
to odd cycles in Gy, and

(iv) the leaves of the star-components in Gy are not adjacent.

As the leaves of the star-components are not adjacent, we can, by claw-
freeness and Lemma 77, further supposce that cach star-component is a path
on three vertices which we shall call a three-component.

Note that among all schemes that satisfy these properties, S is the one
with the fewest number of components in Gy (as it is minimal). To prove
the lemma, we show that if, for S, G5 contains more than one component,
then we can find a scheme S’ that admits fewer components to G,

For S, let the vertex sets of the two-components of G be {{u;, v;
1,...,¢}. By Lemma ?7?, we can assume that the vietim of u; in Gy is not
unique, but that of v; is unique. By Observation 7?7, v; fires at the centre-
free leaf of a three-component, say y;. Let 2; be the vietim of ;. Suppose
that x; is the centre vertex of a three-component. Then there is also an edge
from w; to once of the leaves, say w, of the three-component (else, by (iv),
z;, u; and the leaves of the three-component induce a claw). Let z be the
other leaf of the three-component.

Suppose that y; = w. Then let S be a scheme identical to S except that
in the first round

7=

e y; fires at y;,
o gy, fires at u;,
e u; fires at vy,
e 7; and z firc at cach other.

Thus S’ has one fewer two-component in Gy than S.
Suppose that y; = z. Then let S” be a scheme identical to S except that
in the first round

e v; and y; fire at cach other,

12



e u; fires at x;,
e 1; fires at w,
o 1w fircs at w;.

Thus S’ has one fewer two-component in Gy than S.
Suppose y; ¢ {w, z}. Then let S’ be a scheme identical to S except that
in the first round

e v; and y; fire at cach other,
e wu; and w firc at cach other, and
o 1; and z firc at cach other.

Thus S’ has one fewer two-component in Gy than S. Hence, we have proven
that z; is not the centre-vertex of a three-component.

Suppose that x; is the leaf of a three-component. If y; also belongs to
this three-component, then, since x; # y;, we have that w;, v; and the three-
component of their victims lic on a 5-cycle in G. Then let 7 be a scheme
identical to .S except that in the first round these five vertices fire according
to an orientation of this 5-cycle. Thus S’ has one fewer two-component in G
than S.

If #; is the leaf of a three-component that does not contain y;, then ug, v;
and the components containing their first round victims lic on a path of
length 8 in G so can be matched. So let 87 be a scheme identical to S except
that in the first round these cight vertices fire according to this matching.
Thus S’ has onc fewer two-component in Gy than S.

Thus x; is not the leaf of a three-component, and, by (iii), ; belongs to
a two-component.

Thus u; and v; combined with the components of G containing their
victims lic on a path of length 7 in G. We call such a path a seven-component.
Let us motivate this choice of name by showing that the seven-components
are vertex-disjoint.

The vertices v, 1 < 4 < 7, fire at distinct threc-components in the
first round (as their victims arc unique and one of the leaves of cach three-
component is the centre-victim). We must also show that the vietims a;
of the vertices u;, 1 <4 < r, belong to distinet two-components. Suppose
that 2; and x4, ¢ # j, are distinct but belong to the same two-component
in G4. Then let S be a scheme identical to S except that in the first round

e v; and y; fire at cach other,
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e v; and y; firc at cach other,
e u; and z; firc at cach other, and
e u; and z; fire at cach other.

Again S’ has fewer two-components in G than S. Now supposce that @; = z;.
If cither u; or u; is adjacent to the other vertex in ;s two-component, then
we have the previous case. Otherwise, there is an edge wiuy (else there is a
claw). So let S’ be a scheme identical to S except that in the first round

e v; and y; fire at cach other,
e v; and y; firc at cach other, and
e u; and u; firc at cach other.

Again S has fewer two-components in Gy than S.

We have shown that the seven-components are vertex-disjoint. Note that
all the three-components in G contain a victim of a vertex in G and so must
be a subgraph of a seven-component. Thus we can represent S as a collection
of vertex-disjoint seven-components, two-components and odd cycles that
span GG. We denote such a representation G*. Note that the number of
two-components in Gy is equal to the number of seven-components in G*.
Thus to prove the lemma we show that if for S there is more than onc
scven-component in G*, then we can find another scheme with fewer seven-
components.

Let A=ay---a7 and B = by --- by be a pair of seven-components in G*.
First we consider the case where, in G, A and B are joined by an edge a;b;
for some 4, j. We shall show that this implies that the vertices of A and B
admit a perfect matching; thus we can replace two seven-components by
seven two-components.

If 7 and j arc both odd, then we match a; with b; and the remaining
vertices and edges of A and B form paths of even length, so can clearly
be matched. If ¢ is even and § is odd, then, if cither a; 1 or a;11 is adja-
cent to b, we have the previous case. Otherwise, by claw-freeness, there is
an edge a;—1a,4+1 and we include both this and a;b; in the matching, and,
again, what remains of A and B are paths of even length. Finally suppose
that 4 and 7 arc both cven. If there are any other edges from a vertex in
{ai—1,ai,ai41} to a vertex in {bj_1,b;,bj41}, then we have an carlier case.
Otherwise, claw-freeness implies edges a;—1a;41 and b; 1541, and we include
these and a;b; in the matching to again leave only even length paths.
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So we can assume that no pair of seven-components in S are joined by
an edge in G. Now let us assume that S is such that we can find seven-
components A and B such that the length of the shortest path in G between
them is minimum (that is, there is no pair of seven-components in any other
simple scheme separated by a shorter path).

Suppose a shortest path from A to B meets A at a; and the next vertex
along is w. In G*, w must belong to cither a two-component or an odd cycle.

First suppose w i8 in a two-component C' whose other vertex is z. We
describe how to use the vertices of A and C to find a seven-component A’
and two-component € such that w is in A’; thus A’ is closer to B3 than A
contradicting our choice of A and B. By symmetry, there are four cases
according to which vertex of A neighbours w. Suppose a; is adjacent to
w. Then replace A and C with A’ = zwaq --- a5 and O = agar. If ay is
adjacent to w, then claw-freeness implics one of the edges ajas, aiw or agw
is present. Let €7 be, respectively, agar, agar or ajas, and in cach case we
find a path of length 7 on the remaining vertices to be A’. If a3 is adjacent
to w, then let A’ = zwas - - - a7 and O = ajas. If a4 is adjacent to w, then
onc of azas, azw or asw is present. Let €7 be, respectively, ajas, ajas or
aga7, and in cach casc we find a path of length 7 on the remaining vertices
to be A’

Finally suppose that w belongs to an odd cycle. If a4, © odd, is joined
to w, then there is a perfect matching on the vertices of A and the cycle
and we have a scheme with fewer seven-components.  Suppose a;, ¢ even,
is adjacent to w. If cither ¢; 1 or ;11 is joined to w, then we have the
previous case. Otherwise, there must be an edge a; 10,1, and if we match
both this pair of vertices and a; and w, then the remaining vertices of A
and the cycle induce even-length paths and a perfect matching can again be
found. O

Theorem 10 Computing the parallel knock-out number of a claw-free graph
can be done in polynomial time.

Proof: By Thecorem 77, it is sufficient to present methods for checking
whether or not pko(G) is equal to 1 or 2, since if it is neither it must be oc.
Deciding whether a graph can be knocked-out in a single round can be solved
in polynomial time ([?]). So we need only show how to check whether G can
be knocked out in two rounds.

Supposc that pko(G) = 2. By Lemma ?7, we can assume that there is

5

a two-round simple KO-reduction scheme for G in which only two vertices,
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say u and v, survive to the sccond round, and, by the proof of the lemma,
there is exactly one three-component in Gy.

Let w be the first round victim of v. Then G — {u, v, w} has a spanning
subgraph comprising two-components and odd cycles (that is, G; — w) and
can thus be knocked out in one round. Thercfore the following is a necessary
condition for pko(G) = 2: there are three vertices u, v and w in V' such that

e there are edges uv and vw,

e u and w have neighbours other than v and each other, and
o pko(G — {u,v,w}) =1

It is casy to sce that this condition is also sufficient. Thercfore to decide
whether or not pko(G) = 2, we look for a sct of three vertices that satisfies
this condition. This can be done in polynomial time. 0J

As noted before any graph with pko(G) = 1 has a spanning subgraph
consisting of a number of mutually disjoint matchings cdges and disjoint
cycles. For claw-free graphs we have found the following characterisation,
which dircctly follows from the proof of Lemma 77,

Corollary 11 Let G be a connected claw-free graph with pko(G) = 2. Then
G has a spanning subgraph consisting of a number of vertez-disjoint matching
edges, odd cycles and one path on seven vertices.

5 Locally bijective homomorphisms

A graph homomorphism from G = (Vi, Eq;) to H = (Vy, Eyy) is a vertex
mapping [ : Vo — Vi satisfying the property that for any edge wv in Egq,
we have f(u)f(v) in Eyp as well, e, f(Ng(u)) € Ny(f(u)) for all u € V.
For two graphs G and H we write G 2> H if there exists a so-called locally
bijective homomorphism f : Vi — Vi satisfying:

for all w € Vo : f(Ne(u)) = Ny (f(u)) and |f(Neg(u))| =

Ne:(w)).

We compare the parallel knock-out numbers of two graphs G and H with
G £ H. Then we find that pko(H) is an upper bound for pko(G).

Proposition 12 If G % H then pko(G) < pko(H).
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Figure 2: Two graphs G, H with G 2 H and pko(G) < pko(H).

Proof: If pko(H) = oo the statement holds. Suppose pko(H) = k for some
integer & and consider a parallel knock-out scheme that eliminates H in
exactly k rounds. Let f: Vo — Vi; be a locally bijective homomorphism.
For any pair x,y € Vj; with z firing at y in the first round we do as follows.
In G we let cach vertex w with f(u) = z fire at its (only) ncighbour v
with f(v) = y. Clearly there is a locally bijective homomorphism from the
KO-successor of G to the KO-successor of H (the restriction of f to the
remaining vertices is once). Thus we can, in the same way, decide how the
vertices of G should fire in the second and subsequent rounds, and so a
reduction scheme for G that also has k& rounds is obtained. U

We note that the reverse implication is not true. Let P, denote the path
on n vertices. Then we can take G = » and H = 3. Clearly, there
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does not exist a locally bijective homomorphism from G to H. However,
pko(G) =1 < pko(H) = oc.

In Figure 77, we illustrate an example that shows that strict incquality
may hold in the statement of Proposition ?7?: it displays two graphs G and
H with G & H and pko(G) < pko(H). This can be seen as follows. The
mapping f : Vg — Vy; defined by f(2)) = f(&)) = 2;, for 1 <i < 6, and
f (y}) =f (y}’ ) =y;, for 1 <j <4, is alocally bijective homomorphism from
G to H. Below we show that pko(G) = 2 < oo = pko(H).

We first nced some terminology. A bipartite graph G is called (2, 3)-
reqgular if all vertices in once class of the bipartition have degree 2 and all
other vertices have degree 3. Let F' = (V, E) be a (2,3)-regular bipartite
graph. Let X denote the vertices with degree 2, and Y the vertices with
degree 3. Then [E| = 2|X| = 3|Y], so |[Y] = 2¢ and |X]| = 3£ for some
positive integer £, We call a subscet Y* of Y with £ vertices that has the
whole set X as its neighbourhood a star cover of F. Note that both G
and H are (2, 3)-regular bipartite graphs. Furthermore, G has a star cover
{h. vh, ¥4, vh } while H does not have a star cover. Then pko(G) = 2 and
pko(H) = oo follow immediately from a result from [?] on (2, 3)-regular
bipartite graphs that states that a (2,3)-regular bipartite graph G is KO-
reducible if and only if G has a star cover and in this case pko(G) = 2.

6 Conclusions

We solved the square-root conjecture of [?] by giving a tight upper bound on
the parallel knock-out number of a KO-reducible graph G. We also showed
that the parallel knock-out number of a KO-reducible Ky ,-free graph is at
most p — 1, and that this bound is tight. We also gave an upper bound
on the parallel knock-out number of a graph in terms of the parallel knock-
out number of a smaller graph, to which a locally bijective homomorphism
exists. For claw-free graphs we showed that their parallel knock-out number
can be computed in polynomial time. The question of whether the parallel
knock-out number for K ,-free graphs with p > 4 can also be computed in
polynomial time remains open.
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