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Abstract

The well-known Oberwolfach problem is to show that it is possible to
2-factorize Kn (n odd) or Kn less a 1-factor (n even) into predetermined
2-factors, all isomorphic to each other; a few exceptional cases where it
is not possible are known. In this paper we introduce a completely new
technique which enables us to show that there is a solution when each
2-factor consists of k r-cycles and one (n − kr)-cycle for all n ≥ 6kr − 1.
Solutions are also given (with three exceptions) for all possible values of n
when there is one r-cycle, 3 ≤ r ≤ 9, and one (n− r)-cycle, or when there
are are two r-cycles, 3 ≤ r ≤ 4, and one (n− 2r)-cycle.

1 Introduction

Let K∗n be the complete graph Kn if n is odd and Kn less a 1-factor if n is even.
The problem of determining whether there is a 2-factorization of K∗n in which each
2-factor is isomorphic to the same specified graph is known as the Oberwolfach
problem. The notation OP(ra1

1 , r
a2
2 , . . . , r

as
s ) represents the case in which each

2-factor must consist of ai ri-cycles, 1 ≤ i ≤ s. The problem was formulated
by Ringel and is first mentioned in [6]. Many cases have now been solved; see,
for example, [1, 2, 7, 11, 12, 13, 14], or, for a summary of known results, [3]. In
this paper we obtain some further solutions by a method that is completely novel
in the context of the Oberwolfach problem. The method is an adaptation of the
outline/amalgamtion technique used, in particular, in [8] concerning Hamiltonian
decompositions of complete graphs. Our main result is:

Theorem 1 Let r ≥ 3, k ≥ 1 and n ≥ 6kr− 1 be integers. Then OP (rk, n−kr)
has a solution.

Theorem 1 is just a specialization of the following more detailed result.
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Theorem 2 Let r ≥ 3, k ≥ 1 and n be integers. Then a solution to OP (rk, n−
kr) exists if

1. for even r, either n ≥ 6kr − 3, or
n ∈ {2r(2k + i)− 3, 2r(2k + i)− 2 | i = 1, 2, . . . , k − 1},

2. for odd r, even k, either n ≥ 6kr − 3, or n ∈ A ∪B, where
A = {2r(2k+2i+1)−1, 2r(2k+2i+1), 2r(2k+2i+2)−3, 2r(2k+2i+2)−2 |
i = 0, 1, . . . , b(k − 3)/2c}, B = {2r(3k − 1)− 1, 2r(3k − 1)},

3. for odd r, odd k, either n ≥ 6kr − 1, or n ∈ A (where A is as in part 2),

4. n = 4kr − 2.

Theorem 2 is a consequence of Lemmas 3 and 4, except in the cases (r, k) = (3, 1),
n = 27 or n = 28. These cases are covered by Theorem 5 below.

Lemma 3 Let r ≥ 3, k ≥ 1, m ≥ 2k + 1 and n be integers with (r,m) 6= (3, 4).
Then K∗n has a 2-factorization in which each 2-factor contains k r-cycles and an
(n− kr)-cycle for the following values of n:

1. 2(rm− 1) + 1 ≤ n ≤
⌊
m

k

⌋
(rm− 1) + 2, if rm is odd, and

2. 2(rm− 2) + 1 ≤ n ≤
⌊
m

k

⌋
(rm− 2) + 2, if rm is even.

Lemma 4 Let r ≥ 3, k ≥ 1 and n = 2(2kr − 2) + 2 be integers with (r, k) 6∈
{(3, 1), (3, 2)}. Then K∗n has a 2-factorization in which each 2-factor contains k
r-cycles and an (n− kr)-cycle.

Figure 1 shows the values of n which are obtained with the above lemmas for
small k and r.

We also have the further result:

Theorem 5 Let 3 ≤ r ≤ 9, n ≥ r + 3 be integers. Then OP(r, n − r) has a
solution except for the cases OP(3,3) and OP(4,5). Let 3 ≤ r ≤ 4, n ≥ 2r+ 3 be
integers. Then OP(r, r, n− 2r) has a solution except for the case OP(3, 3, 5).

Many of these cases follow from Lemmas 3 and 4, or are proved in [12, 13, 14].
We have solutions to all the remaining cases. In the final section we describe our
method for obtaining these solutions and, as an example, give solutions to all the
outstanding cases of OP(5, n− 5).

We must show that Theorem 2 is a consequence of Lemmas 3 and 4. For each
valid pair (r, k), Lemma 3 provides a series of intervals such that if an integer
n lies in one of these intervals a solution to OP(rk, n − kr) can be found. For
example, consider when r is even: the intervals are given by the last line of
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r k = 1 k = 2 k = 3 k = 4
17 ≤ n ≤ 26 n = 29, 30 n = 34, 41, 42, 45, n = 46, 53, 54, 57, 58,

3 n ≥ 29 n ≥ 33 46 65, 66
n ≥ 53 n ≥ 69

n = 14 n = 30, 37, 38 n = 46, 53, 54, 61, n = 62, 69, 70, 77, 78,
4 n ≥ 21 n ≥ 45 62 85, 86

n ≥ 69 n ≥ 93
n = 18 n = 38, 49, 50 n = 58, 69, 70, 77, n = 78, 89, 90, 97, 98,

5 n ≥ 29 n ≥ 57 78 109, 110
n ≥ 89 n ≥ 117

n = 22 n = 46, 57, 58 n = 70, 81, 82, 93, n = 94, 105, 106, 117,
6 n ≥ 33 n ≥ 69 94 118, 129, 130

n ≥ 105 n ≥ 141
n = 26 n = 54, 69, 70 n = 82, 97, 98, n = 110, 125, 126, 137,

7 n ≥ 41 n ≥ 81 109, 110 138, 153, 154
n ≥ 125 n ≥ 165

n = 30 n = 62, 77, 78 n = 94, 109, 110, n = 126, 141, 142, 157,
8 n ≥ 45 n ≥ 93 125, 126 158, 173, 174

n ≥ 141 n ≥ 189
n = 34 n = 70, 89, 90 n = 106, 125, 126, n = 142, 161, 162, 177,

9 n ≥ 53 n ≥ 105 141, 142 178, 197, 198
n ≥ 161 n ≥ 213

Figure 1: Some cases of OP(rk, n− kr) solved by Lemmas 3 and 4.

the lemma. The intervals abut or overlap if the upper bound of one interval,⌊
m

k

⌋
(rm − 2) + 2, is greater than or equal to the lower bound of the next,

2(r(m + 1)− 2) + 1 = 2rm + 2r − 3; that is, if m ≥ 3k. Therefore for all values
of n greater than 2(r(3k)− 2) + 1 = 6kr − 3, OP(rk, n− kr) has a solution. For

2k + 1 ≤ m ≤ 3k − 1, as
⌊
m

k

⌋
= 2 we can find solutions if 2(rm− 2) + 1 ≤ n ≤

2(rm− 2) + 2; that is, if n ∈ {2rm− 3, 2rm− 2 | m = 2k+ 1, . . . , 3k− 1}, which
is the set described in the first part of Theorem 2. The next two parts of the
theorem can also be seen to follow from Lemma 3 using similar arguments. The
final part follows from Lemma 4.

We shall prove Lemma 3 by showing that an edge-colouring of Krm that
satisfies certain conditions can be extended to obtain a 2-factorization of K∗n.
The method of extending edge-colourings is introduced in the next section. In
Section 3 we present some results which we shall use to find the initial edge-
colouring of Krm.
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First, some further definitions and notation are presented. An r-cycle is de-
noted [v1, . . . , vr]. An edge joining vertices vi and vj is denoted (vi, vj), and
a sequence of adjacent edges (v1, v2), (v2, v3), . . . , (vn−1, vn) will be abbreviated
(v1, v2, . . . , vn). The degree of a vertex v in a graph G is denoted dG(v). The
maximum degree of the vertices in a graph G is denoted ∆(G). An edge-colouring
of a graph G is a function f : E(G)→ C, where C is a set of colours. If G is an
edge-coloured graph, then G(ci) is the subgraph induced by edges coloured ci. A
cycle is ci-coloured if all its edges are coloured ci and is (ci, cj)-coloured if all its
edges are coloured either ci or cj and it contains at least one edge of each colour.

2 Extending Edge-Colourings

Theorem 6 is an adaptation of the outline/amalgamation result obtained for
Hamiltonian decompositions of complete graphs in [8]. It also generalizes results
in [5, 9]. It concerns a Km edge-coloured with t colours, c1, . . . , ct, and a set of

associated parameters, (s1, . . . , st), where each si ∈ {1, 2} and
t∑
i=1

si = n− 1. We

give necessary and sufficient conditions for such an edge-colouring to be extendible
to an edge-colouring of Kn in which Kn(ci) is an si-factor, and if si = 2 Kn(ci)
contains just one more cycle than Km(ci). The case in which each si = 2 was
proved in [9].

Theorem 6 Let m and n be integers, 1 ≤ m < n. Let (s1, . . . , st), si ∈ {1, 2},
1 ≤ i ≤ t, be a composition of n − 1. Let Km be edge-coloured with t colours
c1, . . . , ct. Let fi be the number of edges coloured ci. This colouring can be ex-
tended to an edge-colouring of Kn in which Kn(ci) is an si-factor, 1 ≤ i ≤ t, and
when si = 2 Kn(ci) contains exactly one more cycle than Km(ci) if and only if

(A1) fi ≥ si

(
m− n

2

)
(1 ≤ i ≤ t),

(A2) sin is even (1 ≤ i ≤ t),
(A3) ∆(Km(ci)) ≤ si (1 ≤ i ≤ t).

Proof of necessity in Theorem 6: Km contains fi edges coloured ci. Each of the
(n −m) further vertices is incident with si edges coloured ci. In Kn there must
be exactly sin/2 edges coloured ci. Hence

fi + si(n−m) ≥ sin

2
.

Rearranging, (A1) is obtained.
An si-factor of Kn has sin/2 edges, and each vertex is incident with si edges.

Hence (A2) and (A3) are necessary. 2
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Before we can prove sufficiency in Theorem 6 we require a result concerning
edge-colourings of bipartite multigraphs.

Given an edge-colouring of a loopless multigraph G with colours c1, . . . , cn,
for each v ∈ V (G), let Ci(v) be the set of edges incident with v of colour ci. An
edge-colouring is equitable if, for all v ∈ V (G),

max
1≤i<j≤n

||Ci(v)| − |Cj(v)|| ≤ 1.

The following result is due to de Werra [16, 17, 18]. A straightforward proof can
be found in [4].

Proposition 7 (de Werra) For each positive integer k, any finite bipartite multi-
graph has an equitable edge-colouring with k colours.

Proof of sufficiency in Theorem 6: The greater part of this proof is devoted to
showing that if m < n − 1, the edge-colouring of Km can be extended to an
edge-colouring of Km+1 in such a way that (A1), (A2) and (A3) remain satisfied,
with m replaced by m+ 1, and, if si = 2, Km+1(ci) contains no more cycles than
Km(ci). By repeating this argument a finite number of times an edge-colouring of
Kn−1 that satisfies (A1), (A2) and (A3), with m replaced by n−1, can be found.
We first show that such a colouring of Kn−1 can be used to find the required
factorization of Kn.

First note that each vertex in Kn−1 has degree n − 2, that (s1, . . . , st) is a
composition of n − 1, and that (A3) is satisfied. Therefore the edge-coloured
Kn−1 has the property (P): Each vertex is incident with si edges of colour ci for
t− 1 values of i, and with si − 1 edges of colour ci for one value of i.

From Kn−1 we obtain Kn by adding a vertex vn and joining it by one edge to
each existing vertex. With m = n−1, (A1) becomes fi ≥ si(n/2−1) (1 ≤ i ≤ t).
Therefore

t∑
i=1

fi ≥
(n− 1)(n− 2)

2
,

and, as there are (n−1)(n−2)/2 edges inKn−1, each fi must be exactly si(n/2−1).
If si = 1, then there are n/2 − 1 edges coloured ci. Since, by (A3), these edges
are independent, there is just one vertex not incident with an edge coloured ci
in Kn−1. The edge joining this vertex to vn is coloured ci. Thus Kn(ci) is a
1-factor. If si = 2, then, by (P), each vertex must be incident with at least one
edge coloured ci. Thus the n− 2 edges coloured ci cannot all lie in cycles; there
must be exactly one path of edges coloured ci. The vertices at either end of this
path are joined to vn by edges coloured ci. Hence Kn(ci) is a 2-factor containing
one more cycle than Kn−1(ci). We have described how to colour n − 1 edges
incident to vn, and, by (P), these edges must be distinct.

Now consider the case when m < n− 1. Construct a bipartite multigraph B
with vertex sets {c′1, . . . , c′t} and {v′1, . . . , v′m}. For 1 ≤ i ≤ t, 1 ≤ j ≤ m, join
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c′i to v′j by x edges, x ∈ {0, 1, 2}, if there are (si − x) edges of colour ci incident
with vj in Km. (Consider the bipartite graph with the same vertex sets as B in
which each c′i is joined to each v′i by si edges. If for each edge (vj, vk) of colour ci
in Km we delete c′iv

′
j and c′iv

′
k, then B will be obtained.) Notice that

dB(v′j) =

( p∑
i=1

si

)
− (m− 1) = n−m (1 ≤ j ≤ m).

Also notice that dB(c′i) = sim− 2fi. Then, considering (A1), we find that

dB(c′i) ≤ sim− 2si(m− n/2) = si(n−m) (1 ≤ i ≤ t).

Let B be given an equitable edge-colouring with n−m colours, κ1, . . . , κn−m. Let
B∗ be the multigraph induced by the edges coloured κ1 and κ2. Notice that

dB∗(v′j) = 2 (1 ≤ j ≤ m),
dB∗(c′i) ≤ 2si (1 ≤ i ≤ t),
|E(B∗)| = 2m.

For 1 ≤ i ≤ t, if in Km two vertices vj and vk lie at either end of a path of edges
coloured ci, where si = 2, and in B∗ v′j and v′k are both adjacent to c′i, then v′j
and v′k form an i-pair.

From B∗ a further bipartite multigraph B+ is constructed. If si = 2, vertex
c′i is split into two vertices, c′i1 and c′i2. For each edge (c′i, v

′
j) in B∗, if si = 1, then

there is an edge (c′i, v
′
j) in B+; if si = 2, then there is an edge (c′il, v

′
j), for some

l ∈ {1, 2}, in B+. Furthermore, these latter edges are constructed such that, for
1 ≤ i ≤ t, 1 ≤ l ≤ 2, dB+(c′il) ≤ 2, and if v′j and v′k are an i-pair, then in B+

there are edges (c′il, v
′
j) and (c′il, v

′
k) for some l ∈ {1, 2}.

B+ is given an equitable edge-colouring with two colours, α and β. This
edge-colouring is transferred to B∗. Let B∗(α) be the subgraph of B∗ induced by
edges coloured α. Notice that

dB∗(α)(v
′
j) = 1 (1 ≤ j ≤ m), (1)

dB∗(α)(c
′
i) ≤ si (1 ≤ i ≤ t), (2)

|E(B∗(α))| = m,

and, if v′j and v′k are an i-pair, then exactly one of the edges (c′i, v
′
j) and (c′i, v

′
k)

is in B∗(α).
The edge-colouring of Km can be extended to an edge-colouring of Km+1 by

adding a vertex vm+1 which is joined to each existing vertex by one edge. For
1 ≤ j ≤ m, if (c′i, v

′
j) is an edge of B∗(α), then vm+1vj is coloured ci. By (1),

the colour of each new edge is precisely determined, and, by (2), vm+1 is incident
with no more than si edges of colour ci. The construction of B ensures that no
other vertex is incident with more than si edges of colour ci in Km+1, so (A3)
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remains satisfied. For 1 ≤ i ≤ t, Km+1(ci) contains no more cycles than Km(ci)
as we ensured, by the creation of i-pairs, that if there is a path of edges coloured
ci, then vm+1 cannot be joined by edges coloured ci to both ends of this path.

We must check that (A1) remains satisfied with m replaced by m+ 1.
If si = 1, and initially fi ≥ m − n/2 + 1, then (A1) will remain satisfied; if

initially fi = m − n/2, then dB(c′i) = n −m, dB∗(c′i) = 2 and dB∗(α)(c
′
i) = 1, so

one further edge in Km+1 is coloured ci and (A1) is still satisfied.
If si = 2, and initially fi ≥ 2(m− n/2) + 2, then (A1) will remain satisfied; if

initially fi = 2(m−n/2)+1, dB(c′i) = 2(n−m)−2, dB∗(c′i) ≥ 2 and dB∗(α)(c
′
i) ≥ 1,

so at least one further edge in Km+1 is coloured ci; if initially fi = 2(m − n/2),
dB(c′i) = 2(n−m), dB∗(c′i) = 4 and dB∗(α)(c

′
i) = 2, so two further edges in Km+1

are coloured ci. In both of the latter two cases (A1) remains satisfied. 2

3 Resolvable Cycle Systems

In the next section Lemma 3 will be proved by edge-colouring a graph and ap-
plying Theorem 6. In this section we introduce some results that will help us
find the initial edge-colouring. A fuller description of these results can be found
in [15].

An r-cycle system of order rm is an edge-disjoint collection of r-cycles that
partitions Krm. A set of m cycles within a system forms a parallel class if each
vertex of Krm is incident with exactly one of the cycles. A cycle system is
resolvable if the cycles can be partitioned into parallel classes. Clearly each
parallel class is a 2-factor of Krm comprising m r-cycles, and therefore rm, and
hence also r and m, must be odd. Alspach, Schellenberg, Stinson and Wagner [2]
have proved the following result.

Proposition 8 Let r ≥ 3 and m ≥ 1 be positive odd integers. Then there exists
a resolvable r-cycle system of Krm.

The analogous structure for even rm is a nearly resolvable r-cycle system of order
rm. This is a partition of Krm less a 1-factor into 2-factors each comprising m
r-cycles. The following result was proved for all cases except m = 4 by Alspach,
Schellenberg, Stinson and Wagner [2]; the remaining case was proved by Hoffman
and Schellenberg [10].

Proposition 9 Let r ≥ 3 and m ≥ 1 be positive integers. Then there exists a
nearly resolvable r-cycle system of Krm if and only if rm is even and (r,m) 6∈
{(3, 2), (3, 4)}.
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4 Proof of Lemma 3

Let p and q be the number of 2-factors in the 2-factorizations of K∗rm and K∗n
respectively. Then

p =
⌊
rm− 1

2

⌋
, q =

⌊
n− 1

2

⌋
.

We know from Propositions 8 and 9 that K∗rm has a 2-factorization in which the
2-factors F1, . . . , Fp each consist of m r-cycles. Very roughly, the idea of the proof
is to separate out q sets of k r-cycles, each such set lying in one of F1, . . . , Fp,
and to colour these sets of cycles with the colours c1, . . . , cq. Then the remaining
edges of K∗rm are coloured using the colours c1, . . . , cq, but without creating any
further cycles in these colours. Theorem 6 is used to extend each colour class to
a 2-factor of K∗n, where the 2-factor contains k r-cycles and an (n − kr)-cycle,
and where the set of all such 2-factors forms a 2-factorization of K∗n.

Suppose that rm and n are both even. Our assumption is that

2(rm− 2) + 1 ≤ n ≤
⌊
m

k

⌋
(rm− 2) + 2.

Since n is even, this is equivalent to

2(rm− 2) + 2 ≤ n ≤
⌊
m

k

⌋
(rm− 2) + 2,

which in turn is equivalent to

2
(
rm− 2

2

)
≤ n− 2

2
≤
⌊
m

k

⌋ (
rm− 2

2

)
.

That is

2p ≤ q ≤
⌊
m

k

⌋
p.

Very similar arguments show that this inequality holds in all the other cases as
well.

In the edge-colouring of K∗rm which we shall obtain from the 2-factorization
F1, . . . , Fp of K∗rm, each colour ci, 1 ≤ i ≤ q, will be used on the edges of k r-cycles
all belonging to the same 2-factor. Let us show that this is possible. Since each

of the p 2-factors of K∗rm contains m r-cycles, it is possible to select
⌊
m

k

⌋
sets of

k r-cycles from any 2-factor of K∗rm, and so it is possible to pick out altogether⌊
m

k

⌋
p sets of k r-cycles, each of the cycles in each set lying in the same 2-factor

of K∗rm. Thus, since q ≤
⌊
m

k

⌋
p, it is possible to colour the edges of q sets of k

r-cycles so that the edges in each r-cycle of each set receive the same colour, and
no vertex has more than two edges of any colour incident with it. Therefore, for
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1 ≤ i ≤ q, the colour ci is used on the edges of k r-cycles of the 2-factor Fj if
i ≡ j mod p.

Since q ≥ 2p it follows that, in particular, the two colours cj and cp+j are
used on the edges of the 2-factor Fj of K∗rm. If rm and n are both even, then we
actually consider Krm with a further colour, cq+1, used on a 1-factor. In the cases
when rm ≡ n mod 2 and when n is even and rm is odd, then, from any given
2-factor, the selection of the sets of k r-cycles to be coloured the same can be
made arbitrarily. Any remaining cycles in a 2-factor Fj can be (cj, cp+j)-coloured.

We now show that we can apply Theorem 6 to obtain the required 2-factorization
of K∗n. We consider the four cases separately.

Case 1: n ≡ rm ≡ 1 mod 2.

Clearly (A2) and (A3) are satisfied. To verify (A1), that fi ≥ 2rm−n (1 ≤ i ≤ q),
we note that, since n ≥ 2(rm− 1) + 1, (A1) follows from fi ≥ 1. This is clearly
true since each colour ci is used on all the edges of some r-cycle.

Case 2: n ≡ rm ≡ 0 mod 2.

In this case we now have an edge-colouring of Krm with a further colour, cq+1,
occurring on a 1-factor. We need to extend this to an edge-colouring of Kn in
such a way that cq+1 occurs on a 1-factor of Kn, and the other colours each form a
2-factor with k r-cycles and an (n−kr)-cycle. (A2) and (A3) are clearly satisfied.
For (A1) we have to show that

fi ≥ 2rm− n (1 ≤ i ≤ q), and
fq+1 ≥ rm− n/2.

Since n ≥ 2(rm−2)+2 and n is even, these inequalities follow from the inequalities
fi ≥ 2, 1 ≤ i ≤ q, (which is true since ci occurs on all the edges of at least one
r-cycle) and fq+1 = rm/2 = p+ 1 ≥ 1.

(Notice that in Lemma 4 we can let m = 2k and then we also have n ≡ rm ≡
0 mod 2. The proof is essentially the same as for Case 2 of Lemma 3. We can
put p = rk − 1, q = 2(rk − 1), and then the argument follows easily.)

Case 3: n ≡ rm+ 1 ≡ 0 mod 2.

In this case the 2-factorization of K∗n that we require is equivalent to a fac-
torization of Kn with one further colour, say cq+1, occurring on a 1-factor. Since
n ≥ 2(rm − 1) + 1 and n is even, we have n ≥ 2rm, so (A1) reduces to the
vacuous condition fi ≥ 0 (1 ≤ i ≤ q + 1).

Case 4: n ≡ rm+ 1 ≡ 1 mod 2.
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In this case the 2-factorization of K∗rm is equivalent to a decomposition of K∗rm
into p = 1

2
(rm−2) 2-factors F1, . . . , Fp and a 1-factor, say Fp+1. Also in this case

K∗n = Kn. As before we shall select q sets of k r-cycles, each set lying in exactly
one of F1, . . . , Fp, where, if i+ sp ≤ q, one set of k r-cycles in Fi is coloured ci+sp.
The remaining r-cycles in Fi are (ci, ci+p)-coloured. The extra difficulty in this
case is that the edges of the 1-factor Fp+1 need to be coloured with the colours
c1, . . . , cq so that no vertex has more than two edges of any colour incident with
it and no further cycles of any colour are created. In order to carry out this
task, it is convenient not to select the k-sets of r-cycles arbitrarily, but instead
to proceed more cautiously. We shall colour two edges of Fp+1 with the colours
used on the cycles of F1, and, for 2 ≤ i ≤ p, we shall colour one edge of Fp+1 with
the colour used on a cycle of Fi. Since Fp+1 has rm/2 = 1

2
(rm − 2) + 1 = p + 1

edges, this will deal with all the edges of Fp+1.
Let S be a set of k r-cycles in F1. At most kr edges of Fp+1 are incident with

vertices in S, so at least 1
2
rm − kr ≥ 1

2
(2k + 1)r − kr = 1

2
r edges of Fp+1 are

not incident with vertices in S. Therefore if r ≥ 4, there are at least two edges
of Fp+1 that are not incident with vertices in S. If r = 3 then m is even, so
m ≥ 2k + 2, and the same conclusion may be drawn. Let e∗ and e+ be edges of
Fp+1 that are not incident with cycles in S.

First suppose that k = 1, so that we require only one r-cycle of each colour.
Then S contains just one r-cycle, say C1+p. Let e0 = e∗ and e1 = e+, let the
remaining edges of Fp+1 be e2, . . . , ep, and let ei = (vi, wi), 0 ≤ i ≤ p. Let C1 be
an r-cycle in F1 with |V (C1) ∩ {v0, w0, v1, w1}| ≥ 1. We colour C1 with colour
c1, C1+p with colour c1+p, and e0 and e1 with c1+p as well. For each j such that
1 + 2p ≤ 1 + jp ≤ q, one r-cycle of F1 will be coloured with c1+jp. Let T be
a set containing the remaining uncoloured cycles of F1. These cycles must be
(c1, c1+p)-coloured. They may be incident with e0 and e1 so we must find a way
to colour them so that no c1+p-coloured cycle containing e0 or e1 is formed, no
vertex is incident with three c1+p-coloured edges, and c1 and c1+p are each used
at least once on each of the cycles in T . We can assume that v1 ∈ C1. If v0 is in
a cycle in T then we colour the two edges of that cycle incident with v0 with c1.
Therefore neither e0 nor e1 can be in a c1+p-coloured cycle. If w0 is in a cycle in
T then we colour one of the edges of that cycle that is incident with w0 with c1.
Note that we have not yet coloured all the edges of any cycle in T since we have
only coloured three edges and if v0 and w0 are in the same cycle it must contain
at least four edges as v0 and w0 cannot be adjacent. If w1 is in a cycle in T then
we colour one of the edges of that cycle that is incident with w1 with c1 if we have
not done so already (w1 may be adjacent to v0 or v1). We have ensured that no
vertex is incident with three c1+p-coloured edges and we have still not coloured
all the edges of any cycle in T since one of the edges incident with w1 (if it is in
a cycle in T ) was left uncoloured. We complete the colouring of the cycles in T
ensuring that c1 and c1+p are each used on at least one edge of each cycle. For
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2 ≤ i ≤ p, the cycle in Fi containing vi is coloured ci, and ei is coloured ci+p. If
wi is in a (ci, ci+p)-coloured r-cycle, we make sure that one edge incident with wi
is coloured ci.

Now consider the case when k ≥ 2. Let e0 ∈ Fp+1, e0 = (v0, w0). We can
choose S, a set of at least two r-cycles now, so that the cycles in S contain v0 and
w0. Colour the edges of the cycles in S with c1, and colour e0 with c1+p. Recall
that an edge e∗ ∈ Fp+1 is disjoint from S. Let e1 = e∗ = (v1, w1). Colour e1
with colour c1. The r-cycles incident with (v1, w1) form part of a set of k r-cycles
that we colour c1+p. Let the remaining edges of Fp+1 be e2, . . . , ep, where, for
2 ≤ i ≤ p, ei = (vi, wi). For 2 ≤ i ≤ p, vi and wi lie in a set of k r-cycles that we
colour ci, and we colour ei with ci+p. For 1 ≤ i ≤ p, the remaining cycles of Fi
are (ci, ci+p)-coloured.

Clearly (A2) and (A3) are satisfied. (A1) is satisfied since fi ≥ 3 = 2rm −
(2(rm− 2) + 1), as each colour ci is used on all the edges of some cycle. 2

5 Proof method for Theorem 5

In this section we describe the method we used to solve the remaining cases of
OP(r, n−r), 3 ≤ r ≤ 9, and OP(r, r, n−2r), 3 ≤ r ≤ 4. We again use Theorem 6.
As in the proof of the last section, if n is odd, then si = 2, 1 ≤ i ≤ t; if n is even,
then, for 1 ≤ i ≤ t− 1, si = 2, and st=1. We choose a value of m and colour the
edges of Km. If si = 2, Km(ci) contains k r-cycles and no other cycles. Thus,
if (A1), (A2) and (A3) are satisfied, then the edge-colouring is equivalent to a
solution of OP(rk, n − kr). (A1) determines the minimum size of Km(ci). (A2)
and (A3) are clearly satisfied. We shall see that by recolouring only a few edges
many solutions can be found quickly from one initial colouring.

We demonstrate this method by solving the remaining cases of OP(5, n −
5). Solutions are already known for OP(5, 3), OP(5, 5), OP(5, 7), OP(5, 9) and
OP(5, 11) [3] and for OP(5, 13) and OP(5, n−5) for n ≥ 29 (Lemmas 3 and 4). It
is known that OP(5, 4) has no solution [3]. We present solutions for the remaining
cases. An edge-colouring of Km is given by describing the subgraph induced by
each colour. Recall that [v1, . . . , vr] is a cycle, and (v1, . . . , vr) is a sequence of
adjacent edges where v1 is not adjacent to vr.

OP(5, 6): m = 9; by (A1), we require fi ≥ 7, 1 ≤ i ≤ 5.

K9(c1) = [1, 2, 3, 4, 5] (6, 7, 8)
K9(c2) = [1, 3, 5, 6, 9] (7, 2, 8)
K9(c3) = [1, 4, 2, 9, 8] (6, 3, 7)
K9(c4) = [3, 8, 6, 4, 9] (1, 7, 5, 2)
K9(c5) = [4, 7, 9, 5, 8] (1, 6, 2)
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OP(5, 8): m = 9; by (A1), we require fi ≥ 5, 1 ≤ i ≤ 6. The solution is as above,
except that five edges are recoloured to give

K9(c6) = [2, 5, 7, 3, 6]

OP(5, 10): m = 13; by (A1), we require fi ≥ 11, 1 ≤ i ≤ 7.

K13(c1) = [1, 2, 3, 4, 5] (6, 7, 8) (9, 10, 11, 12, 13)
K13(c2) = [1, 3, 5, 2, 4] (7, 12, 8, 13, 11, 9, 6, 10)
K13(c3) = [1, 6, 8, 5, 10] (3, 13, 7, 9, 2, 12) (4, 11)
K13(c4) = [1, 7, 2, 6, 11] (4, 8, 3, 9, 13, 5) (10, 12)
K13(c5) = [1, 8, 10, 4, 9] (2, 13) (3, 6, 12, 5, 11, 7)
K13(c6) = [1, 12, 3, 10, 13] (2, 8, 11) (6, 4, 7, 5, 9)
K13(c7) = [2, 10, 7, 3, 11] (5, 6, 13, 4, 12, 9, 8)

For OP(5, 12), OP(5, 14), OP(5, 16), OP(5, 18), OP(5, 20) and OP(5, 22), the
solution is as above, except that we recolour a number of edges for each new
solution. For OP(5, 12) we require that each fi ≥ 9, for OP(5, 14) we require
that each fi ≥ 7 and for the remaining solutions it is sufficient that each fi ≥ 5.

OP(5, 12): K13(c8) = [2, 8, 3, 6, 13] (4, 7, 9, 10, 11)
OP(5, 14): K13(c9) = [2, 9, 5, 7, 12] (8, 13, 11)
OP(5, 16): K13(c10) = [3, 9, 7, 11, 13]
OP(5, 18): K13(c11) = [4, 7, 6, 12, 11]
OP(5, 20): K13(c12) = [4, 8, 11, 9, 12]
OP(5, 22): K13(c13) = [5, 11, 10, 12, 13]

For OP(5, 15), OP(5, 17), OP(5, 19), OP(5, 21) and OP(5, 23), we can adapt the
above solutions. The solution for OP(5, 2k− 5) is the same as for OP(5, 2k− 6),
except that three edges are recoloured (a sufficient number to satisfy (A1)) to
give

K13(ck) = (4, 13) (5, 12) (6, 9)
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[1] B. Alspach and R. Häggkvist, Some observations on the Oberwolfach prob-
lem, J. Graph Theory, 9 (1985), 177-187.

[2] B. Alspach, P. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach
problem and factors of uniform odd length cycles, J. Combin. Theory A, 52
(1989), 20-43.

[3] B. Alspach, The Oberwolfach problem, in “The CRC Handbook of Combi-
natorial Designs”, (C. J. Colbourn, J. H. Dinitz, Eds.), CRC Press, Boca
Raton, Florida, 1996, 394-395.

12



[4] L. D. Andersen and A. J. W. Hilton, Generalized latin rectangles, in “Re-
search Notes in Mathematics”, (R. J. Wilson, Ed.), Vol 34, Pitman, New
York, 1-17.

[5] J. K. Dugdale and A. J. W. Hilton, Amalgamated factorizations of complete
graphs, Combinatorics, Probability and Computing, 4 (1994), 215-231.

[6] R. K. Guy, Unsolved combinatorial problems, in “Combinatorial Mathemat-
ics and Its Applications”, Proceedings Conf. Oxford 1967”, (D. J. A. Welsh,
Ed.), Academic Press, New York, 1971, 121.

[7] P. Hell, A. Kotzig and A. Rosa, Some results on the Oberwolfach problem,
Aequationes Math, 12 (1975), 1-5.

[8] A. J. W. Hilton, Hamiltonian decompositions of complete graphs, J. Combin.
Theory B, 36 (1984), 125-134.

[9] A. J. W. Hilton and W. R. Johnstone, Some problems about
r-factorizations of complete graphs, J. Combinatorial Math. and Combina-
torial Computing, to appear.

[10] D. G. Hoffman and P. J. Schellenberg, The existence of Ck-factorizations of
K2n − F , Discrete Math., 97 (1991), 243-250.

[11] J. D. Horton, B. K. Roy, P. J. Schellenberg and D. R. Stinson, On decom-
posing graphs into isomorphic uniform 2-factors, Ann. Discrete Math., 27
(1985), 297-320.

[12] C. Huang, A. Kotzig and A. Rosa, On a variation of the Oberwolfach prob-
lem, Discrete Math., 27 (1979), 261-277.

[13] E. Kohler, Das Oberwolfacher Problem, Mitt. Math. Ges. Hamburg, 10
(1973), 124-129.
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Basel, 1977, 189-201.

[15] C. A. Rodger, Cycle systems, in “The CRC Handbook of Combinatorial
Designs”, (C. J. Colbourn, J. H. Dinitz, Eds.), CRC Press, Boca Raton,
Florida, 1996, 394-395.

[16] D. de Werra, Balanced Schedules, INFOR, 9 (1971), 230-237.

[17] D. de Werra, A few remarks on chromatic scheduling, in “Combinatorial
Programming Methods and Applications”, (B. Roy, Ed.), D. Reidel Publ.
Co., Dordrecht, Holland, 1975, 337-342.

13



[18] D. de Werra, On a particular conference scheduling problem, INFOR 13,
(1975), 308-315.

Department of Mathematics
University of Reading
Whiteknights
P.O. Box 220
Reading
RG6 6AX

14


